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ABSTRACT

We present an analytical model for predicting the
behavior of a squeeze-film dominated MEMS fluid ejector.
The ejector consists of a piston that is driven toward a
nozzle plate with a relatively thin layer of fluid sandwiched
between the two (Fig. 1). We derive an expression for the
pressure distribution generated by the moving piston, and
develop a lumped-element model for predicting the piston
motion. We use the model to study device performance.
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ejection, analytical analysis, drop-on-demand.

1 INTRODUCTION

MEMS fluid ejection systems are being used in a wide
range of applications including micro-dose drug delivery,
ink-jet printing, and various biomedical and chemical
micro-dispensers. An electrostatically actuated MEMS
ejection system has been fabricated at Sandia National
Laboratories using the SUMMIT process [1]. In this device,
the piston is supported in its rest position by polysilicon
springs, and drop ejection occurs when the piston is
electrostatically accelerated toward the nozzle plate. The
Sandia ejector has an operating frequency of 10 kHz and
produces 2-4 picoliter drops moving at 10 m/s. To date, this
device has been simulated as an axisymmetric finite
element model using the GOMA program. The dominant
pressure mechanism is due to the squeeze-film effect. In
this paper we derive an expression for the pressure
distribution generated by the moving piston, and develop an
analytical model for predicting the device performance. Our
model yields results in agreement with the prior GOMA
analysis. We use it to study device performance as a
function of variations in the reservoir gap g, with the input
power fixed. Our analysis shows that the drop volume and
velocity degrade as the gap decreases, but the volumetric
efficiency increases. This is due to the movement of the
fluid stagnation point away from the orifice as the gap
decreases. Our model enables rapid parametric analysis of
device performance, and is of considerable use in the
development of novel MEMS fluid ejectors.
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Figure 1: Axisymmetric fluid ejector.
2 THEORY

We model the fluid ejector using a lumped-element
analysis. The motion of the piston is obtained from the
equation for the force balance on the piston

dv

(m, +meﬁ(t))7: = F,(t)—kx, ()

., 1)

-2 Ip(r,vp,t)rdr + ZFf
0

wherem,,, x,(¢) , and v,(f) are the mass, position, and
velocity of the piston, m,; (f) is the effective mass of the
fluid that it accelerates, F,,(¥) is the applied force, k is a
spring constant of the polysilicon support members,
p(r,v,,1) is the squeeze-film pressure distribution acting
on the piston, and Z F '+ represents other forces due to the

fluid motion. In the following sections we obtain
expressions for the dominant terms in Eq. (1).
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2.1 Squeeze-Film Analysis

In this section we derive an expression for the pressure
distribution developed by the moving piston. We apply
Reynolds lubrication theory to the axisymmetric geometry
shown in Fig. 1. The pressure satisfies the following
differential equation

10 (r 6p(r,t))=_12/1

t
h3 vP() (2)

(p<r<r,)

ror or

where 7, and 7, are the radius of the orifice and the piston

respectively, and h is the distance from the piston to the
nozzle plate. The general solution to this equation is of the
form

3 t
p(r.t)= ~—ﬂY§—(—)r2 + ¢ In(r) + ¢, 3)

wherec,and ¢, are constants determined form the

boundary conditions [2]. The pressure distribution (3) peaks
atavalue p, at the stagnation radius 7, (f),

ke
r@®=, ’—'— , (4)
6uv, (1)

as shown in Fig. 1.
The boundary conditions for this problem are

p(r.t)=ps(0) (r=r,)
p(r,1) = pp(t) (r=r,)
where pp(¢)and p,(¢f) are the pressures beneath the

&)

orifice (7 <7,), and at the edge of the piston, respectively.

We determine expressions for py(f) and pp(f) by

considering the volume flow rates through the orifice and
into the reservoir, respectively.

The volume flow rate through the orifice due to the
piston motion is

2

0, =zr, t)W,(®). ©)
The fluid is considered to be incompressible, and therefore
the velocity of the fluid exiting the orifice is given by

b (f) = A (t);’,, ®) .

o

We use Eq. (7) to estimate the Bernoulli pressure py(?),

ps(0)= %p =00

Q)

®

o

Similarly, the flow rate into the reservoir is given by

0y =x(r, =1 ), ) ©
This flow rate can be is related to the pressure p,(f) and
the piston velocity v,(?),

O (t) =apy(t)+grr,v, (1), (10)
(271'rp ) g
12ud,
and d p s the thickness of the piston. The first and second

terms in Eq. (10) account for Poiseuille and Couette flows
through the gap, respectively. From Egs. (9) and (10) we
obtain

pr®)= le—[”(r: _rSZ)_gn-rp]vp(t) (1)

where @ = , M is the viscosity of the fluid,

We solve Egs. (3)«(5), (8) and (11) simultaneously and
obtain formulas for py(#), ¢, and ¢,. Specifically, we

find that
2
—b® ++/b* —4c(t
Py = . <) (12)
where
6ur.’ 3
b=- ‘u:" \/z[ln(ro/rp)—ﬂh il 13)
h P 6au
and
3;[ 2 2 7Z'rp2
c0)=-| 5 (" -7 )+ == [, a4
and that
6 2
cl = ”:P 2pB (t) , (15)
h \} P
and
3ur, :
¢, =pp(D)+ h;’ v,(H)—¢In(z,). (16)

The stagnation radius 7; (t) is obtained from Eq. (4).

2.2 Effective Mass

We take into account inertial effects by estimating the
mass of fluid accelerated by the piston as it moves. As
above, we assume that the fluid within the stagnation radius
flows towards the orifice, while the fluid beyond this point
flows through the gap into the reservoir. We consider the
flow towards the orifice first. We assume that the mass of
fluid within the stagnation radius accelerates at the same
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rate as the piston itself. Thus, the effective mass of this
fluid is

m (1) = p(h—x,@))7r @), )
where /, is the initial distance between the nozzle plate and
the piston in its rest position, and x ,(¢) is the distance of

the piston from its rest position, respectively.

Next, we consider the flow through the nozzle. Since the
fluid is incompressible, the volume flow rate through the
orifice is given by Eq. (6), and the average acceleration of
this flow is

2
a,(n) = -:f-z—a,, ). (18)

o
The effective mass associated with this flow is

2
m(t) = plyzr,”, (19)
where [, is the thickness of the nozzle plate.

We now consider the flow into the reservoir. Let v (7,7)
denote the average velocity of the fluid at a distance
(r,<r<r,) beyond the stagnation radius. When the

piston moves we find that that,

& (7-7)
at  2r(h-x,(t)

v, ()
a,()++—= (20)
) (

hy—x,(0))

This gives rise to a force of the form,
rp3 + 21;3 2
F@t)=px —-3————1'5 r, ap(t)

3 3 2
P b S SN /50 @
3 (ho—x,)

The first term can be treated as an effective mass, which we
call my,

rp3 +2r’

—5———— rT, | (22)

my = p7
The second term in Eq. (21) is a force that needs to be
included in the . F; term in Eq. (1).

Finally, we consider the acceleration of fluid through the
gap. From the conservation of mass we know that

(r} o)

p
Therefore, the effective mass of this fluid is

a,(t)= a,(t). 23)

2 2
m, = prtlp(rp 7, (t)). 24)
From our analysis we find that the total effective mass of
the fluid is

3 3
r, +2r, (t)_ )

meﬁ(t)=pﬂ[ 3 7, rp} + prly,(t)

(25)
+pr(hy-x,@)r2 @) + prl, (1, -1®)

2.3 Equation of Motion

The equation of motion Eq. (1) contains an expression
Z F, that accounts for additional forces due to fluid flow.

Two such forces arise from the flow across orifice/air and
gap/reservoir interfaces. These additional forces have the

form,

E,(t)=prr,v,’ (@), (26)
and

2
F,(t)=p2nr,gv, (1), X))

where v, (f)is the average velocity across the

gap/reservoir interface. We collect all the relevant terms
and obtain the following equation of motion for the
piston

dv )
(m, +me,f(r))7" = E(O)~kc,(O)—71, ps(v,.0)

’, 7 rZ—rsz 2
—ZEIp(r,vp,t)rdr— P (2p ) vpz(t)
; (27,8
4 3 3 2
AN r, +2r, ) v, ®
—pr-<v “(H)— £ v | —F——
pﬂ";z p() pﬂ 3 s'p (ho—xp(t))

(28)
To perform device simulation, we integrate this nonlinear
ODE using a fourth-order Runge-Kutta method. We present
some sample calculations in the next section.
3 RESULTS

We use Eq. (28) to study the behavior of the drop
ejector. To estimate the drop velocity, we track the

momentum P, and mass M, of the fluid exiting the orifice,

F = }on(t)vo(t)dt, 29

and
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M, = [pQ,0dr, (30)
0

where 7 is the duration of the applied voltage. The drop
velocity is given by

V,=P,/M,. @31
This analysis does not take into account the complex free-
surface phenomenon of necking at the orifice, and therefore
will over estimate the drop velocity. We impose an

additional constraint that the fluid will flow trough the
orifice only when the Bernoulli pressure exceeds the

Laplace pressure 20/ r, (O is the surface tension),

0 pp<20/r,
0,(0) = (32)

ar’v, () pg220/r,

We apply our model to an ejector with the following
parameters: 7, =10um, 7, =60um, and k =25 N/m.

The reservoir gap is taken to be infinity, and the fluid is
water, We apply a constant electric field of E = 25

V/micron for a period of 7 =4.4us. Therefore, the
applied force is F,(f)=é&x (rpz -r’ )E /2 where
£=70¢g,. We compute the drop velocity and volume for

two different initial heights A, =4.5 and 5.5um. We

obtain drop volumes of 2.8 and 3.36 picoliters, respectively
with velocities of 10 and 10.47 m/s. This represents a

120% increase in drop volume for the larger /,, which is

in agreement with Gooray et al., who report a 126%
increase for a similar geometry [1].
Next, we study the device performance as a function of

the reservoir gap g. We set 7, =10um,r, =100um,

and k = 100 N/m. We fix the applied voltage at 60 V for
7=2.5us. Our analysis shows that drop volume and

velocity degrade modestly as the gap approaches 3 um, and
then more rapidly below that value (Figs. 2 and 3). The
peak stagnation pressure and piston displacement follow a
similar trend. However, the volumetric efficiency increases
dramatically as the gap decreases indicating that a higher
fraction of the fluid displaced by the piston is ejected
though the orifice. The reason for this is that the stagnation
radius increases with decreasing gap. These results are also
in agreement with the work of Gooray et al. [1].

The analysis of this section takes only a few minutes on
a personal computer. Therefore, our analytical model is
useful for understanding the ejector physics, and for
performing rapid parametric analysis.
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Figure 2: Drop volume vs reservoir gap.
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Figure 3: Drop velocity vs reservoir gap.
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Figure 4: Volumetric efficiency vs reservoir gap.
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