Multimodality therapy: Enhancement of melanoma cell death with combination of heat shock protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), and gold nanoparticles in a noninvasive radiofrequency field

,
,

Keywords: ,

Melanoma is the most deadly form of skin cancer. Hyperthermia has been used to treat advanced stage melanoma. However, solid tumors often respond minimally to hyperthermic treatment due to the thermo-tolerance induced by chaperons of the heat shock protein family (Hsp). 17-AAG, an Hsp90 inhibitor, is currently studied in clinical trials and is used as a direct cancer therapeutic agent. We have previously shown that gold nanoparticles heat cancer cells under a noninvasive radio frequency field (RF). Here, we demonstrate the enhancement of melanoma cell death under the tandem treatment with Hsp90 inhibition and heat therapy using gold nanoparticles in a noninvasive RF field. This approach appears to be a more promising strategy as the cytotoxicity of 17-AAG is far less compared to the other Hsp inhibitors that have been reported so far. Further, internalization of gold nanoparticles is superior to that of ferromagnetic particles that have been used in those previously published studies.

PDF of paper:


Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2010: Bio Sensors, Instruments, Medical, Environment and Energy
Published: June 21, 2010
Pages: 409 - 411
Industry sector: Medical & Biotech
Topics: Biomaterials, Cancer Nanotechnology
ISBN: 978-1-4398-3415-2