Nanotech 2008 Vol. 3
Nanotech 2008 Vol. 3
Nanotechnology 2008: Microsystems, Photonics, Sensors, Fluidics, Modeling, and Simulation - Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, Volume 3

Lab-on-a-Chip, Micro & Nano Fluidics Chapter 3

Understanding Conduction Mechanisms in Nano-Structures

Authors: V.H. Gehman Jr, K.J. Long, F. Santiago, K.A. Boulais, A.N. Rayms-Keller

Affilation: Naval Surface Warfare Center, Dahlgren Division, United States

Pages: 409 - 412

Keywords: nanostructure, ionic conductor, electrical properties

Many technologies require the understanding of conduction and electrical transport mechanisms through nanostructures. Previous research has revealed unusual and enhanced conduction properties in pores whose width is significantly less than 1 m over a range of +10V to -10V. Characterization of the enhanced conduction will include experimental measurements and theoretical models looking to explain the effects of nanopore size, bulk ionic concentration, solute ionic charge, solvent, semiconductor versus metallic contacts and voltage upon conduction current. The model will attempt to adapt the concepts of the ionic atmosphere, dielectric effects at interfaces, ionic density and mobility to the unique environment within the nanopore. By exploiting the enhanced current, there exists the potential for order-of-magnitude improvements in sensors, computation and communications. Conduction and attachment mechanisms are the cornerstone to the successful integration of nano-devices into Naval systems using conventional semiconductors.

ISBN: 978-1-4200-8505-1
Pages: 940
Hardcopy: $159.95