MSM 2000
MSM 2000
Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems

Process Modeling Chapter 2

Two-Dimensional Simulation of Scanning Capacitance Microscopy Measurements of Arbitrary Doping Profiles

Authors: L. Ciampolini, M. Ciappa, P. Malberti and W. Fichtner

Affilation: Swiss Federal Institute of Technology, Switzerland

Pages: 48 - 51

Keywords: scanning capacitance microscopy, 2D carrier profiling, device simulation, ultrashallow junctions

Accurate prediction of doping distributions in modern VLSI devices (e.g. shallow junctions) with TCAD tools represents a major challenge which requires the process simulation models to be accurately tuned on the basis of two-dimensional dopant profile measurements. Scanning capacitance microscopy is a scanning probe based technique which provides images with spatial resolution in the 10 nm range. The extraction of quantitative doping information from the raw experimental data requires a calibration procedure. Presently, most of the results are obtained either with a large reverse simulation effort or with a first-order data inversion procedure (direct inversion). The current assumption of the latter approach is thequasi-uniformity ofthe doping profile. The scope of the present paper is to investigate the limits of this simplified approach by two-dimensional simulations of SCM measurements.

ISBN: 0-9666135-7-0
Pages: 741