Analog Compact Modeling for a 20-120V HV CMOS Technology

HV CMOS transistor, Sub-circuit modeling, mismatch modeling.

E. Seebacher, W. Posch, K. Molnar, A. Steinmair,
W. Pflanzl, B. Senapati and Z. Huszka

WCM 2006 11-05-2006

a leap ahead
- HV LDMOS transistor sub-circuit modeling
 - DC & AC modeling
 - Modeling of HV LDMOS parasitics
- Mismatch considerations for HV LDMOS
State of the art Model Solutions

Sub-circuits (Macro model):
- Compatible to all simulators
- Higher simulation time, convergence

Compact Model with internal node:
- Node solved internally or from the simulator
- Higher simulation time, convergence

Compact Model:
- Combination of the low voltage MOS region with the high voltage drift region without internal node.
- Short computation time
HV LDCMOS Device X-section

HV NMOS substrate based

HV NMOS isolated

automotive applications, switching power supplies and amplifiers
HV LDMOS Transistor Model HV/analog Requirements

- DC & AC characteristic
 - Scalability of W & L, Quasi-Saturation, intr. & extr. caps
- Symmetrical and unsymmetrical, source & drain res and cap.
- Voltage up to 120V & Temperature behavior up to 180°C
- Noise Modeling (1/f, thermal)
- Capable of creating statistical models
 - physical parameter sets (WC corner & MC)
- Substrate current modeling (diodes and bipolars)
- Device mismatch for LDMOS parameters
Sub - circuit modeling overview

DC & AC modeling:
- M0 BSIM3v3 model (standard effects)
- M1 BSIM3v3 model (lateral doping effect & overlap caps)
- RDJ (RON for low current regime)
- J2 & J1 JFET (quasi saturation effect)
- E voltage source (length scalability)
- VERT_PNP & LAT_NPN (parasitic capacitances and substrate currents).
Results DC Model large and short device
- Intrinsic capacitances are influenced by lateral-doping gradient in the p-type region under the gate oxide.

- Gate above the less doped body adds a MOS capacitance in parallel.

- Lateral doping gradient is taken into account by M1 with shortened source and drain.

- M1 parameters can be adjusted without affecting the DC model.

- M1 is used for modeling the gate to source and the gate to drain overlap capacitance.
Presentation Overview

- HV LDMOS transistor sub-circuit modeling
 - DC & AC modeling
 - Modeling of HV CMOS parasitics
- Mismatch considerations for HV CMOS
- Usage of standard S/D diodes in MOS transistor model is not possible

- Bipolar effects occur, when parasitic diodes are forward biased and result in reasonable substrate currents.

- Model must include parasitic bipolar effects for substrate current description

- The parasitic diodes and BJT equations must be scalable by MOS- transistor width and length

- Number of devices should be low as possible. Avoided lateral bipolar for lower complexity.
H- Bridge induces a parasitic substrate current

- \(I_{ds} \) Forward current
- Free wheeling current
off motor and \(V_{GS} = 0 \) results in inductive current
- parasitic pnp transistor occurs.

\[
\text{Pv} = V_{ds} \cdot I_{ds}
\]
HV LDMOS Transistor parasitics

Additional parasitics:
Diode structure between MOS body and drain

Scaling parameters:
JS, JSW
CJ, CJSW

Instance parameters:

\[
AREA = 2.75e-06 \times (w + 16e - 06)
\]

\[
PERIMETER = (11e-06 + w + 16e - 06)
\]

Additional parasitics:
PNP structure between MOS body (Emitter), MOS drain (Base) and substrate (Collector)

Used model: Gummel Poon

Scaling parameters:
IS, IKF, IBEI, BF
CJE, CJC

Instance parameter:
\[
AREA = w \times l
\]
Parasitic Bipolar Transistor Scaling

- Models must be scalable for enabling the designer to select MOS devices of arbitrary length (L) and width (W).
- Parasitic bipolar scaling is assumed by the LDMOS device area.
- Therefore the area parameter of the parasitic bipolar transistor has to be a combination of MOS transistor length and width.
Parasitic Bipolar Details

- Main goal: modeling of the substrate current
- Substrate current is injected by the \(pnp \)
- Lateral \(npn \) contributes only to the drain current i.e. to the base current of the \(pnp \).
- This simplifies modeling and makes it possible to safely omit the \(npn \) from the subcircuit.

- The actual implementation of the lateral-\(npn \) device was omitted by taking its effect on the base current into account by a special scaling technique.
Scaling Results IS, IKF, ISE, BF

- Ideal linear dependence with the inverse area for IS, IKF, ISE
- Randomly dependency for BF
 - ibei of the lateral bipolar described with neutral base recombination affected base current

J. Lindmayer and C. Y. Wrigley, „Fundamentals of Semiconductor Devices,“

\[IS = IS_+ + IS_L \cdot \frac{1}{A} \]

\[BF = \frac{IS_+ + IS_- A \cdot \frac{1}{A}}{ibei_vl + \frac{1}{L^2} \cdot ibei_lat0 + \frac{1}{A} \cdot ibei_0 - L^2 \cdot ibei_lat2} \]

\[ibei_lat(L) = \frac{ibei_lat0}{L} \cdot \frac{L}{\tanh\left(\frac{L}{A}\right)} \approx \frac{ibei_lat0}{L} + L \cdot ibei_lat1 - L^3 \cdot ibei_lat2 \]
Results of parasitic bipolar models NMOSI20, NMOSI50

W/L=10/0.5

NMOS_5 (NI20HF) SGDC20@FG

Measurements: symbols
*......Ucb=20V
+......Ucb=16V
x......Ucb=12V
+......Ucb=8V
o......Ucb=4V
*......Ucb=0V

IC, IB [A]

W/L=10/0.5

NMOS_5 (NI50MF) SGDC01@FG

Measurements: symbols
*......Ucb=50V
+......Ucb=40V
x......Ucb=30V
+......Ucb=20V
*......Ucb=10V
+......Ucb=0V

IC, IB [A]

W/L=40/2

NMOS_80 (NI20HC) SGDC20@FG

Measurements: symbols
*......Ucb=20V
+......Ucb=16V
x......Ucb=12V
+......Ucb=8V
*......Ucb=4V
o......Ucb=0V

IC, IB [A]

W/L=40/2

NMOS_80 (NI50MC) SGDC01@FG

Measurements: symbols
*......Ucb=50V
+......Ucb=40V
x......Ucb=30V
+......Ucb=20V
*......Ucb=10V
+......Ucb=0V

IC, IB [A]
- HV LDCMOS transistor modeling
 - DC & AC
 - Modeling of HV LDMOS parasitics
- Mismatch considerations for HV LDMOS
Goal of Mismatch Characterisation

Characterisation and Modelling of HV-MOSFET MISMATCH

- Yield prediction during the design phase
- Improvement of the circuit robustness

NEEDED:
- Proper mismatch model (Voltage and Area dependency)
- Parameter extraction strategy
- Simulator implementation
MOS Drain-current Mismatch

Matched transistor pair:

Pair of MOS transistors with identical layout close to each other

Measurement:

\[\frac{\Delta ID}{ID} = \frac{2 \cdot (ID_1 - ID_2)}{(ID_1 + ID_2)} \]

\[\sigma \left(\frac{\Delta ID}{ID} \right) = \sigma \left(\frac{2 \cdot (ID_1 - ID_2)}{(ID_1 + ID_2)} \right) \]

Measured data from production: ID - mismatch [%]

n=997, min= -0.88%, max= 0.7%
• Measure current ID1 and ID2 for several gate voltages (k=21 points per curve).

• Several matched pairs of LDNMOS or LDPMOS transistors (m=60 pairs per wafer).

• Calculate relative mismatch

\[
\sigma(\Delta ID / ID) = \sigma\left(\frac{2 \cdot (ID_1 - ID_2)}{ID_1 + ID_2}\right)
\]

for any gate voltage.
Variance Model

Drain current model:

\[I_D = f(P_1, P_2, ..., P_n) \]

Taylor Expansion:

\[\frac{\Delta I_D}{I_D} = \frac{1}{I_D}\left(\frac{\partial f}{\partial P_1} \right) \Delta P_1 + \frac{1}{I_D}\left(\frac{\partial f}{\partial P_2} \right) \Delta P_2 + \cdots + \frac{1}{I_D}\left(\frac{\partial f}{\partial P_n} \right) \Delta P_n + \text{corr.} \]

\[\sigma^2 \left(\frac{\Delta I_D}{I_D} \right) = S_{P_1}^2 \sigma^2(\Delta P_1) + S_{P_2}^2 \sigma^2(\Delta P_2) + \cdots + S_{P_n}^2 \sigma^2(\Delta P_n) + \text{corr} \]
HV-LDMOS Structure & Model

MOS Model + Drain Resistor

Parameters:

\[I_D = \frac{W}{L} \left(\frac{V_G - V_T}{2} \right)^2 + \theta (V_G - V_T) \]

……Saturation region

\[I_D = \frac{W}{L} \frac{\kappa (V_G - V_T) \cdot VDS}{1 + (\theta + \alpha_r) (V_G - V_T)} \]

\[\alpha_r = \frac{W}{L} \cdot \kappa \cdot R_D \]

……Linear region

\[V_T \quad \kappa \quad \theta \quad R_D \]

threshold voltage

current gain factor

mobility reduction

drain resistance
Sensitivities Saturation:

\[\frac{\Delta I_D}{I_D} = f_{sat}(\Delta V_T, \Delta \kappa, \Delta \theta) \]

\[\sigma(\Delta V_T), \quad \sigma(\Delta \kappa), \quad \sigma(\Delta \theta) \]

Extract from measured \(\sigma(\Delta I_D)/I_D \)

\[I_D = \frac{W \kappa}{L} \frac{(V_G - V_T)^2}{2(1 + \theta(V_G - V_T))} \]

⇒ Taylor Expansion

\[\Delta I_D = \left(\frac{\partial I_D}{\partial V_T} \right) \Delta V_T + \left(\frac{\partial I_D}{\partial \kappa} \right) \Delta \kappa + \left(\frac{\partial I_D}{\partial \theta} \right) \Delta \theta \]

\[\frac{\Delta I_D}{I_D} = -\left(\frac{2+\theta(V_G - V_T)}{(V_G - V_T)(1+\theta(V_G - V_T))} \right) \Delta V_T + \frac{1}{\kappa} \Delta \kappa - \left(\frac{V_G - V_T}{1+\theta(V_G - V_T)} \right) \Delta \theta \]

\[\text{Sensitivities} \]
SATURATION

S_{VT}

S_{K}
Sensitivities linear Region:

\[
\frac{\Delta I_D}{I_D} = f_{\text{lin}}(\Delta V_T, \Delta \kappa, \Delta \theta, \Delta R_D)
\]

Extract \(\sigma(\Delta V_T)\), \(\sigma(\Delta R)\) from measured \(\sigma(\Delta I_D)/I_D\)

\[
I_D = \frac{W}{L} \frac{\kappa(V_G - V_T) \cdot VDS}{1 + (\theta + \alpha_r)(V_G - V_T)}, \quad \alpha_r = \frac{W}{L} \cdot \kappa \cdot R_D
\]

Taylor Expansion 1st oder

\[
\Delta I_D = \left(\frac{\partial I_D}{\partial V_T}\right) \Delta V_T + \left(\frac{\partial I_D}{\partial \kappa}\right) \Delta \kappa + \left(\frac{\partial I_D}{\partial \theta}\right) \Delta \theta + \left(\frac{\partial I_D}{\partial R_D}\right) \Delta R_D \Rightarrow
\]
Sensitivities linear Region:

\[
\frac{\Delta I_D}{I_D} = -\left(\frac{1}{(V_G - V_T)(1 + (\theta + \alpha_r)(V_G - V_T))} \right) \Delta V_T - \left(\frac{V_G - V_T}{1 + (\theta + \alpha_r)(V_G - V_T)} \right) \Delta \theta
\]

\[
+ \left(\frac{1 + \theta(V_G - V_T)}{\kappa(1 + (\theta + \alpha_r)(V_G - V_T))} \right) \Delta \kappa \cdot \left(\frac{W}{L} \frac{\kappa(V_G - V_T)}{1 + (\theta + \alpha_r)(V_G - V_T)} \right) \cdot \Delta R_D
\]

\[\Delta R_D \]
LINEAR REGION

\[\sigma\left(\frac{\Delta I_D}{I_D}\right) \]

\[S_{VT} \]

\[S_{RON} \]

\[S_{V_T}^2 \sigma^2(\Delta V_T) \]

\[S_R^2 \sigma^2(\Delta R) \]

\[S_x^2 \sigma^2(\Delta \kappa) \]
Extraction of mismatch parameters

\[
\sigma^2 \left(\frac{\Delta I_D}{I_D} \right) = S_{V_T}^2 \sigma^2(\Delta V_T) + S_\kappa^2 \sigma^2(\Delta \kappa) + S_\theta^2 \sigma^2(\Delta \theta) + S_R^2 \sigma^2(\Delta R)
\]

1. Step: Saturation:

Extract \(\sigma(\Delta V_T) \), \(\sigma(\Delta \kappa) \), \(\sigma(\Delta \theta) \) from measured \(\sigma(\Delta I_D)/ID \)

2. Step: Linear region:

Extract \(\sigma(\Delta V_T) \), \(\sigma(\Delta R) \) from measured \(\sigma(\Delta I_D)/ID \)

\(\sigma^2(\Delta V_T) \): threshold mismatch parameter

\(\frac{\sigma^2(\Delta \kappa)}{\kappa^2} \): gain mismatch parameter

\(\sigma^2(\Delta \theta) \): mobility reduction mismatch parameter

\(\sigma^2(\Delta R_D) \): drain resistor mismatch parameter
RESULT: Saturation Region

$\Sigma (\Delta (I_D)/I_D) \%$

$V_G [V]$

n_{50h}
RESULT: Saturation Region

\[\text{n50h } A_{VTH} = (2.755 \times 10^{-8} \pm 3.211 \times 10^{-9}) \text{ V m} \]

\[\text{n50h } A_{U0} = (1.06 \times 10^{-6} \pm 1.754 \times 10^{-7}) \% \text{ m} \]
RESULT: Linear Region

\[
\Sigma(\Delta(I_D)/I_D) [\%]
\]

\[
A_{RD} = (4.075 \pm 1.153) \text{ Ohm}
\]

\[
W / (\text{um})
\]

\[
\Sigma(\Delta(R_D)) / \text{Ohm}
\]
Summary

Presentation of a HV LDMOS transistors sub-circuit model

- DC/AC modeling for W & L scalable devices
- Scalable modeling of the parasitic diodes and bipolar transistors
- Mismatch parameter discussion for LDMOS transistors