Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Construction and Electrical Characterization of 0.9 nm Tall Channels Made via Pyryl Phosphonic Acid (PYPA) Self-assembly

J. Dong, B.A. Parviz, H.L. Yip, H. Ma and A.K-Y. Jen
University of Washington, US

self-assembly, self-assembled monolayers, charge transport, nano-channel

Molecular self-assembly can yield well-defined systems for charge carrier transport for the construction of a variety of devices such as field effect transistors and biosensors. We report a simple method to create an extremely confined charge carrier transport channel between two metal electrodes over a silicon dioxide surface using self-assembly of pyryl phosphonic acid (PYPA). The use of phosphonic acid group has allowed us to form the self-assembled monolayer (SAM), constituting the charge transport channel, on silicon dioxide. This ability provides the opportunity to integrate the channels with complementary metal oxide semiconductor integrated circuits in a one-step post-process procedure. We were able to create micron-domain sized multilayer crystals of PYPA between the electrodes by allowing self-assembly at room temperature and form a dense uniform 0.9 nm thin monolayer between the electrodes if the condensation reaction is allowed to proceed. We characterized the charge transport behavior of the multilayer nano-channels between the electrodes and observed an exponential dependence between the device current and the applied bias. We also studied the device current under constant biases when temperature was varied between 270°K and 310°K and observed a strong temperature dependence. These measurements indicate shallow trap dominated conduction behavior in the molecular system.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact