Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Bulk Nanostructured Metals by Severe Plastic Deformation (SPD)

M.J. Zehetbauer, M. Krystian and W. Lacom
Vienna University, AT

nanometals, severe plastic deformation, constitutive modelling

The top-down methods of “Severe Plastic Deformation (SPD)” have been shown to have the potential for directly converting conventional metals into submicron- or nano-scaled bulk materials. These techniques exhibit significant advantages compared to bottom-up ones: Bulk nanomaterials are achieved in fully dense shape without involving dangerous nanopowders, and without grain coarsening as during nanopowder consolidation. In addition to increased strength and enhanced magnetic properties, SPD-nanometals exhibit a considerable ductility up to superplastic behaviour, a higher fatigue limit and superior hydrogen storage performance. The spectacular mechanical properties recommend SPD materials for aerospace and automotive industry, for metals machining tools, and for advanced sputtering targets. SPD bulk nanomagnets are suited for computer hardware, generators, transformers, and mechatronic systems. The high superplastic formability of SPD materials will speed up the production process of Al- and Mg-alloys by at least a factor 10. New results of properties of several SPD-processed materials will be presented, together with features of structural characterization. Using new mechanical property data of SPD CP-Ti it is shown that the constitutive model of one of the authors very well describes both the experimental strengthening data and the evolution of microstructural parameters such as cell size and dislocation density.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact