Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

An Atomistic Simulation Study of Carbon Nanostructure Growth in the Porosity of Different Zeolites

T. Roussel, C. Bichara and R.J.-M. Pellenq
Centre de Recherche en Matière Condensée et Nanosciences, CNRS, FR

carbon nanostructures, hydrogen storage, grand canonical Monte-Carlo

In this work, we present Grand Canonical Monte-Carlo simulation results for the adsorption of carbon vapour in the pores of various zeolites: AlPO4-5, silicalite and Faujasite (both in its sodium and siliceous form). The carbon-carbon interactions are described within the frame of a Tight Binding approach (fourth momentum’s method) while the carbon-zeolite interactions are modelled using a PN-TrAZ physisorption potential. In the case of AlPO4-5, we demonstrate the possibility of producing the smallest single wall carbon nanotubes (0.4 nm in diameter) in agreement with experiment [Wang N., Tang Z. K., Li G.D., J.S. Li, ’Single-walled 4 Å nanotube arrays’, Nature, 408, 50-51 (2000)]. By contrast, the adsorption of carbon in the porosity of silicalite zeolite allows just the formation of a network of intercrossing carbon chains. The intrinsic stability of such carbon nanostructures was also investigated after removal of the inorganic phase by performing Molecular Dynamics relaxations using a bond order carbon-carbon potential (see for instance. The adsorption isotherm of molecular hydrogen was subsequently calculated at room temperature for each relaxed structure.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact