Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Large Scale Nanocarbon Simulations

S. Tejima, M. Iizuka, N. Park, S. Berber, H. Nakamura and D. Tomanek
Research Organization for Information Science & Technology, JP

largescale simulation, carbonnanotube, mechanical properties

The mechanical response of carbon nanotubes to revere deformation has attracted much attention since their discovery in 1991. Carbon nanotubes have already demonstrated exceptional mechanical properties: their excellent flexibility during bending have been observed experimentally. Nanotubes combine high stiffness with elasticity and the ability to buckle and collapse in a reversible manner even largely axially compressed or twisted deformation. For these reasons, it has been suggested that carbon nanotubes could be promising candidates for a new generation of extremely light and super strong fiver. However, experiments probing the strength of nanotubes are very challenging, but to the difficulties in growing high quality, defect-free nanotubes of sufficient length and in measuring the strength of nanoscale objects. Theoretically, investigating the strength of carbon nanotubes requires modeling of inherently mesoscopic phenomena, such as plasticity and fracture on a microscopic compose of several thousands of atoms. The first principle methods based on the wave function of electrons are limited in the atomic structure of several hundreds atoms, but a large scale tight-binding simulation based on quantum orbit presents challenging up to tens of thousands of atoms. Our large scale simulation using Earth Simulator enables ourselves to reach this target. In simulations, elastic and buckling properties of nanotubes in difference radius and chirality are investigated on. When the change in length is small fracture under the compression, resisted load is proportional to compressed length. Above the first critical load, carbon nanotube occurs symmetrical buckling with keeping the elastic property. Above the second critical higher than first one, carbon nanotube dose asymmetrical buckling and into a fracture. The dependence of buckling point on length, radius and chirality of nanotubes will discuss in detail.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact