Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Spin Density Functional Theory Simulations of Quantum Point Contacts: An Investigation of Spin Filtering Effects

R. Akis and D.K. Ferry
Arizona State University, US

quantum wire, quantum point contact, spin, spintronics

We present simulations of quantum wires and quantum point contacts (QPCs) formed in semiconductor heterostructures. Conductance measurements for such structures is quantized with plateaus at integer multiples of G_0= (2e^2/h) as function of gate voltage, a result readily explained by a single electron quantum mechanical theory. More recent experiments however have found additional non-integer plateaus in QPCs and wires, in particular a ~0.7 G_0 conductance anomaly. These require electron-electron interactions to be included to account for them theoretically. Applying spin-density-functional theory (SDFT) to these systems, we obtain ~0.7 G_0 anomalies similar to experiment and find that these features can be correlated with the formation of spin-dependent energy barrier structure which can allow two modes of spin-down electrons to be almost fully transmitted through the channel before spin-up electrons start being allowed through. These barriers, which are largely the result of the exchange potential, rise and fall as function of the local density and one can exploit this to tune the spin-filtering effects. We can also account for additional features such as anomalies at ~0.25 G_0 and “missing” plateaus at higher conductances, features which have also been recently observed.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact