Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Control Synthesis of Functional Nanoassemblies using Langmuir-Blodgett Method

H.-L. Wang, Z. Tang, Y. Gao, R.J. Magyar, S. Tretiak, A.P. Shreve
Los Alamos National Laboratory, US

Langmuir, self-assembly, noncavalent interaction, azobenzene

We strive to design syntheses of a series of amphiphilic molecular building blocks that can self-assembled at the air-water interface to form 2D and 3D nanostructures with specific opto-electronic properties. Compression of these molecular building blocks – azobenezene derivatives with tunable dipole-dipole interactions– using Langmuir-Blodgett method gives rise to monolayer thin films with different packing density and electronic coupling between chromophores. Depends on the dipole-dipole interactions, we observe a transition of thin film from amorphous to ordered structures and this transition is exhibited in their optical spectroscopy. Furthermore, we use a series of spectroscopy tools such as neutron and X-ray reflectometery to probe the nanoassembly structures at the molecular level. We also use simulation method to help determine how molecules come together at the air-water interface. Our results demonstrate that the interplay between dipole-dipole and ?-? interactions dominate the formation of amorphous and ordered thin films and their associated properties. Based on our understanding, we expect to achieve synthesis of a wide range of 2D and 3D functional nanoassemblies that are previous inaccessible.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact