Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Amelogenin Nanospheres Supra-Molecular Assembly and the Preferential Orientation of Apatite Crystals

J. Moradian-Oldak, C. Du and G. Falini
University of Southern California, US

tooth enamel, amelogenin nanospheres, biomineralization, assembly

Amelogenin self-assembly into nanospheres has been recognized as a key factor in controlling the oriented and elongated growth of carbonated apatite crystals during tooth enamel formation. We investigated the process of amelogenin self-assembly into higher order structures in vitro. Amelogenins form the typical nanospheres with the hydrodynamic radii (RH) of 10-25 nm under a wide variety of solution conditions. The sub-units of nanosphere with 4~8 nm in diameter were detected in the diluted protein solutions by dynamic light scattering and directly revealed by transmission and atomic force microscopy. Micro-ribbon structures of rP172 were obtained upon slow solvent evaporation. Nanosphere-chains of >100nm in length were formed and assembled into the birefringent micro-ribbons (~100X10X3 microns). The x-ray diffraction pattern (European Synchrotron Radiation Facility, Grenoble) of the micro-ribbon was suggestive of a unique conformation and secondary structure of folded amelogenins. The immersion of the micro-ribbons in the calcium phosphate solution resulted in the formation of remarkably ordered apatite crystals oriented with their c-axes parallel to the long ribbon axes. The intrinsic property of the full-length amelogenin to self-assemble into ordered supramolecular structures gives us a valuable clue to its function as a scaffold in facilitating the oriented growth of apatite crystals.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact