Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Venue 2005
Press Room
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

How To Design for Analog Yield using Monte Carlo Mismatch SPICE Models

P.B.Y. Tan, A.V. Kordesch and O. Sidek
Silterra Malaysia Sdn Bhd, MY

mismatch, yield, Monte Carlo, SPICE, analog

The downscaling of devices causes the unpredictability of analog circuit yield. Transistor mismatch is one of the obstacles to achieving high yield. Analog circuit designers usually run Monte Carlo mismatch models to predict the functionality of their circuits especially when minimum size devices are used. As per inverse square root law, mismatch becomes more severe when transistor gate area decreases. In this work we demonstrate a method that analog circuit designers can use to predict the circuit yield. We propose a simple way to predict analog circuit yield by using a combination of Monte Carlo mismatch and process variation SPICE models. If only process variation were used, there would be no mismatch or offset voltage. If only mismatch models were used, then there would be no process variation. We demonstrate the yield prediction simulation by using Silterra 0.18um MOS SPICE models. We use a differential matched pair as a simple analog circuit example. In our example, offset voltage (VOS) is used as the circuit performance parameter. The yielding circuits will have to meet the requirement that VOS < 10 mV. We show how to find the minimum matched transistor width required to achieve 3-sigma yield (99.7%). The proposed method is as follows: Start with the set of required performance parameters for the circuit and their specifications. As a simple example we use a differential pair with performance parameters: DC gain (A), offset voltage (VOS), and power supply rejection ratio (PSRR). Our goal is to select values for the circuit design parameters (L, W, R) such that the predicted yield for this circuit will meet expectations, say 99.7%. In our example, we run Monte Carlo SPICE simulations with N = 50. The SPICE models from the manufacturer already contain the statistical variations of the manufacturing process in the form of Monte Carlo coefficients. Our simulation includes both process variation and mismatch. From this result we plot 3-sigma VOS versus the design parameter W as shown in Figure1. To achieve VOS of 10 mV we see that the required W is at least 3.5 um. This example illustrates how we used Monte Carlo SPICE models to design for 99.7% yield (3-sigma). The aim of this paper is to illustrate usage of mismatch models not only for yield prediction but for designing a circuit to achieve a given yield target. The method shown in this paper will enable analog circuit designers to take into account the trade-off between matched transistors size and yield when designing their circuits. We hope this paper will give designers an insight into their circuit’s yield caused by transistor mismatch and process variation before going into fabrication.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact