Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Index of Authors
2003 Sub Sections
Press Room
NSTI Events
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Nanoscale Bio-Molecular Control Using EC-OWLS

J.P. Bearinger, J. Vörös, N.D. Spencer, J.A. Hubbell, M. Textor
ETH Zurich/ Lawrence Livermore National Laboratory, US

Keywords: polymer, interfaces, electrochemical, biotechnology

A new technique has been developed that combines evanescent-field optical sensing with electrochemical control of surface adsorption processes. This technique, termed “Electrochemical Optical Waveguide Lightmode Spectroscopy” (EC–OWLS), proved efficient in monitoring molecular surface adsorption and layer thickness changes of an adsorbed polymer layer examined in situ as a function of potential applied to a waveguide. For optical sensing, a layer of indium tin oxide (ITO) served as both a high refractive index waveguide and a conductive electrode; an electrochemical flow-through fluid cell incorporated working, reference and counter electrodes. Poly(L-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) served as a model, polycation adsorbate. PLL-g-PEG adsorption from aqueous buffer solution increased from 125 to 475 ng/cm2 along a sigmoidal path as a function of increasing potential between 0 and 1.5 V versus the Ag reference electrode. Upon buffer rinse, adsorption was partially reversible when a potential 0.93 V or greater was maintained on the ITO waveguide. Reducing applied potential back to 0 V before rinsing resulted in irreversible adsorption. PLL-g-PEG modified with biotin demonstrated similar adsorption characteristics, but subsequent streptavidin binding was independent of biotin concentration. Applying positive potentials resulted in increased adsorbed mass, presumably due to polymer chain extension and reorganization in the molecular adlayer.

NSTI Nanotech 2003 Conference Technical Program Abstract

Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact