Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Index of Authors
2003 Sub Sections
Press Room
NSTI Events
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Variation of Contact Barrier Height in Metal-Semiconducting Carbon Nanotube Junctions using a Localized Gate

E. Gallo, B. Nabet, M. Freitag, A.T. Johnson
Drexel University, US

Keywords: nanotube, schottky

We have previously succeeded in modulating current in a carbon nanotube “FET” device due to the presence of a potential on an AFM tip. Symmetric I-V is observed with no tip, however, the tip has a strong facilitating effect on current flow when the junction in its vicinity is reverse biased, thus giving rise to asymmetric I-V characteristics and demonstrating that the junction is controlling device behavior. Previous explanations of this behavior have mainly been qualitative and based on changing of the Fermi level due to the presence of the tip. Here, we present a formulation based on the electrostatic potential of the tip and its effect on the Schottky barrier height. We propose that the presence of the CT-AFM creates a position dependent voltage potential that adds to the existing potential within the junction and modifies the maximum height of this barrier. The reduction is of the order of tens of meV at its maximum, which in turn increases thermionic emission 3 to 4 times, consistent with experimental results. The model explains increased conduction in the nanotube without a change in the tube’s Fermi level.

NSTI Nanotech 2003 Conference Technical Program Abstract

Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact