Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Index of Authors
2003 Sub Sections
Press Room
NSTI Events
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Numerical Simulation of Microfluidic Flow Using a Combination of Micro and Macro Computational Techniques: Scaling Issues

T. Mautner
SPAWAR Systems Center San Diego, US

Keywords: Microfluidics, Lattice Boltzmann, Convection-Diffusion, Scaling, Simulations

Recent literature has demonstrated the possibilities of using configurable surfaces to enhance the flow of fluids in MEMS devices. Not only are surface properties important in fluid delivery, the inherent problems of mixing by diffusion in microfluidic laminar flow needs to be over come to provide more efficient fluidics for bio-sensors. While investigating the use of synthetic jets for fluid mixing in MEMS devices, it was necessary to compute both the fluid flow and concentration fields. The Lattice Boltzmann Method (LBM) has been used to compute the flow field data. The micro formulation of LBM was supplemented with a macro-scale, finite difference formulation of the convection-diffusion equation. While this seems easy enough, it became apparent that the main issue with this hybrid approach is proper scaling of the grid spacing and time increment. This work presents the results of the hybrid method as applied to Re<150 flows concentrating on the microfluidic regime of Re<10. The computation method uses algorithms which have been compared to results found in the literature, and provides simulations showing the effects of grid size and time increment scaling.

NSTI Nanotech 2003 Conference Technical Program Abstract

Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact