Lyceum Chinense and Calcium Phosphate Nanoparticles for Ophthalmic Drug Delivery

Q. He¹, ², Zhenqing Fang², M. Wang², Q.W. Xu², R Chen², D. Li², X.Z. Zhang¹, W.M. Yaun¹, D.M Zhau¹, Jian Wu³
¹Nanjing Carrier Nano-Biotech Inc, ²Nanjing Medical University, and ³Nanjing High Technology Industry Development Zone.

ABSTRACT
Glaucoma, the leading cause of irreversible blindness in the world, is estimated to be affected by 67 million people. It is characterized by an increase in intraocular pressure (IOP). Carbonic anhydrase inhibitors (CAIs) are orally used for controlling IOP. Since CA II/IV/XII is present in many other tissues, systemic CAIs possess undesired side effects. In order to avoid these undesired side effects, we have developed topically methazolamide using nanoparticles consisting lyceum chinense and calcium phosphate as a delivery system. Preliminary studies showed strong and long-lasting IOP lowering, being more effective than clinical used brinzolamide. The maximum lowering in normal white and pigmented rabbits were about 6.14±0.96mmHg and 4.20±1.38mmHg (mean±SEM) respectively. HPLC results showed the peak concentration in the aqueous humor appeared in 15 minutes (0.3µg/ml). Clinical and toxicity evaluation indicated there is no irritation and inflammation on the experimented eyes compared with the control group by histology examination and slit lamp. Also, there is no toxic effect in the acute toxicology and allergic experiment. Based on our findings, we suggest that lyceum chinense and calcium phosphate nanoparticles may favor the localized ocular delivery of CAIs for the treatment of glaucoma.

Keyword: lyceum Chinense, IOP, nanoparticles

1 INTRODUCTION
Carbonic anhydrase inhibitors (CAIs) such as acetazolamide and methazolamide were and still are widely used systemic anti-glaucoma drugs. Their mechanism of action consists in inhibition of CA present in ciliary processes of the eye, with the consequent reduction of bicarbonate and aqueous humor secretion, and of elevated IOP characteristic of this disease. Since CA is present in many other tissues, systemic CAIs possess undesired side effects such as metallic taste; depression; fatigue; malaise; weight loss; decreased libido; gastrointestinal irritation; metabolic acidosis; renal calculi and transient myopia. Therefore, the topically effective CAIs have been highly needed. To achieve this goal, we introduced a new nanoparticles delivery system consisting of lyceum chinense, calcium phosphate, and methazolamide. The efficiency and toxicity of the new formulation were investigated and evaluated.

2 MATERIALS AND METHODS

2.1 Preparation and Characterization of methazolamide nanoparticles
Nanoparticles were made of calcium chloride, dibasic sodium phosphate and Lyceum Chinense (Fisher Scientific USA). The particle size and the zeta-potential were measured using Zetasizer Nano ZS90 (Malvern instruments limited, China). The Dispersion Technology Software was used for analysis effective diameter.

2.2 Intraocular Pressure (IOP) Measurements
Twenty-four white rabbits (NZW) and twenty-four pigmented rabbits (Nanjing anlimo company) were randomly divided to 4 groups (methazolamide nanoparticles, brinzolamide, nanoparticles, and control). 100ul of Experimental drugs were topicaly administrated. Intraocular pressure (IOP) was measured at appropriate times using an impression tonometer (YJ1 Mingren Co. China).

2.3 Pharmacokinetic analysis
The aqueous humor samples were carried out at appropriate times after the drug was administered in NZW rabbits and analyzed with Hitachi HPLC system.
2.4 Tolerance and irritation assay in vivo and pathology analysis
The left eye of NZW rabbits were exposed to nano-methazolamide 3 times per day for 7 days. Ocular irritation was evaluated every day by slit lamp. The right eyes were used as the control group. Experimental rabbits were sacrificed at day 7 and the eyeballs were collected and fixed in 10% methanol for histology analysis.

3 RESULTS

3.1 Characterization of methazolamide nanoparticles
The size of particles ranged from 80 to 620 nm with 85% of the particles between 85nm-150 nm. The mean of zeta potential was -22mV

<table>
<thead>
<tr>
<th>Zeta Potential (mV)</th>
<th>Mean (mV)</th>
<th>Area (%)</th>
<th>Width (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeta Potential (mV)</td>
<td>-22.2</td>
<td>100.0</td>
<td>4.03</td>
</tr>
<tr>
<td>Zeta Deviation (mV)</td>
<td>4.03</td>
<td>0.00</td>
<td>0.9</td>
</tr>
</tbody>
</table>

The zeta potential of nano-methazolamide

3.2 Efficiency of methazolamide nanoparticles on IOP in NZW and pigmented rabbits
As shown in Figure 3 and 4, IOP lowering was more pronounced in 0.2% nano-methazolamide group than the 1%brinzolamide in both animals. The maximum IOP lowering was about 6mmHg and 4mmHg respectively.

Figure 3. IOP in NZW rabbits (n=10). * p<0.05.

Figure 4. IOP in pigmented rabbits (n=10). * p<0.05.

3.3 Concentration of methazolamide in the aqueous humor of NZW rabbits
The peak time of methazolamide concentration in the aqueous humor appeared in 15 minutes (0.3µg/ml) (n=5).

Figure 5. The methazolamide concentration in the rabbits’ aqueous humor after drug administered

3.4 Preclinical toxicity evaluation:
Figure 6 indicated that there were no irritation and
inflammation on the experimental eyes compared with the control eyes by slit lamp. The histological examination showed no severe inflammation responses (n=10).

Table 1: Side effects of mathazolamide nanoparticles

<table>
<thead>
<tr>
<th>Event</th>
<th>PBS control</th>
<th>brinzolamide</th>
<th>Mathazolamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stinging/burning</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Conjunctival hyperemia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Itching</td>
<td>0</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Superficial punctuate epitheliopathy</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tearing</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Conjunctival discharge</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Redness</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

4 CONCLUSIONS

One of the main problems in the ocular drug delivery is related to the presence of the mucus barrier that incorporates the ocular tear film. This defensive mechanism represents the main limitation to the use of liquid formulations for ophthalmic therapy. At present, there is strong evidence that nanoparticles can improve delivery of drugs applied topically onto the eye. In fact, a number of studies have shown the potential of different kinds of nanoparticles, nanocapsules, liposomes, and microparticles to increase the retention of drug on the ocular surface as well as to facilitate penetration across the corneal epithelium. Among the different delivery system nanoparticles hold special promise (8). Therefore, nanoparticles are becoming increasingly investigated as a means of drug delivery and prolonging drug release in and around the eye. They appear to be well tolerated in animal models whether intraocular delivery or injected pericocularly or intravitreally. A demonstrated consistency in increasing drug solubility and drug release kinetics is also observed with these drug depots (1, 2, 7). Sustained intraocular therapeutic drug concentrations can be also be achieved without surgical implantation of slow-release drug delivery device or repeated intravitreal/pericocular injections (3, 4). It has been shown that intraocular drug concentrations can be typically achieved with
biodegradable and biocompatible nanoparticles (5). Several techniques of nanoparticles preparation and drug encapsulation have been long studied for ophthalmic uses and found to be reliable and safe in those applications. Clearly, nanoparticles-based methazolamide has achieved better therapeutic effect with low concentration compared with brinzolamide, which is a commercial available topic anti-glaucoma drug. There were no side effects and toxicity according to histological reports. The nanoparticles carrier showed no toxicity and inflammation response to the rabbit eye. Furthermore, the materials that have used for formulating nanoparticles have been proved by Chinese FDA. But the maximum IOP lowering and duration time are different between NZW and pigmented rabbit. The hypothesis is that the differences may be caused by the pigment-drug binding. It is concluded that utilization of Lyceum Chinense and Calcium Phosphate Nanoparticles as a delivery device can enhance the bioavailability of methazolamide in ocular and induce a significant IOP lowering activity. Future studies will be necessary to test this new formulation in humans.

5 REFERANCE