Hierarchical Approach to Simulation in a Vertical
System for the TriCore Microcontroller
Chris Salzmann, Eric Chesters, Paul Coelhe, Yeh-Chen Fu, Jithendra Madala,

Mulka Reddy, Frank Wang
Siemens Microelectronics Inc.

Abstract

This paper describes a hierarchical functional
verification system for a cors-based system
design which minimizes complexity in
testbenches while maximizing flexibility in
terms of number of clocks and system
interfaces and reducing time-to-market. The
verification system also provides a defined
methodology for early operating system and
application software debug.

1. THE PROBLEM

The problem faced by digital design groups is
how to shoerten the time it takes to design and
debug new processor designs. The problem of
verifying a new machine built upon a new
architecture is in many ways significantly more
complex than the verification of an architectural
increment of an existing machine. Building a
verification system for a new machine architecture
while the architecture is being developed is a fine
example of concurrent engineering.

In the case of building a verification system for a
series of system designs based on a new
architecture one needs to consider more than the
potential for architectural and design change. The
verification system mmst be configurable to permit
the modeiing of various types of systems. The
configurability provided enables customers to use
a core-based methodology in the desicw: of
systems. In any case, the verification, «
the same, find the bugs, find the bug: . the
bugs, and do so in as short a tzne as y«.ie. The

. consensus today is that the most impo:-ant feature
of a machine design is ime-to-market.

oy

slem 1s

Design defects fall into several categories. The
first category includes the defects due to an
incomplete architectural specification. The
specification may have been left incomplete for
any number of reasons, among them being future
expansion of a new architecture. This case is very
dangerous since the mnplications.

426

of this for a new machine may not be fully
understood for a particular implementation. The
second category includes defects due to a
specification error. It is possible for the
specification of a new architecture to specify
conflicting functions, which affect separate
sections of the implementation. Hopefuily,
verification tests or formal techniques later detect
these implementation defects. The specification
could require a feature, which is either difficult or
impossible to implement. In this case, the
implementer may easily make costly mistakes.

In any large machine design with many engineers
involved in the design process, communication is
critical to success, only more 5o on a new
architecture than on an old one. The classical

~ problem here is properly connecting disparate

function blocks in the processor. In a new
machine, this is more complex since there is no
well-trodden path to follow. Etrors of omission
are more likely than are errors of commission. In
a processor, there is also the problem of
verification of computational blocks. It is not
possible, in a processor design to verify every
possible computation. In control logic, there is the
problem of dealing with asynchronous events.
Every machine must have a memory. Some
memories will be dynramic and have refresh, for
example. Logic designers often say such things as,
““That happens only infrequently, don’t worty
about that.” It is in the corner cases of
computations and in less ofien used features
where design defects are most often found. On an
asynchronous system chip, there is the problem of
synchronizing data streams arriving or departing
at various data rates.

In short, there are many potential sources of error
in a machine design. These defect sources need to
be found as quickly as possibie.

In addition to these probiems we cannot
underestimate the problem caused by architectural
changes. The classical approach to verification
means that a cycie-accurate model of the
architecture must be constructed. Imagine writing
a program whose specification continues to
change!



II. RECENT METHODS

Most functional verification systems depend
heavily on modeling and simuiation. Principles of
software reliability are applied to the hardware
design process in the sense of being able to
compare two sepatate implementations of the
same specification. Typically, a verification group
will build two architectural models of the
machine. One model suited for use by software
developers and which is instruction-cycle
accurate. The other model usually constructed is
intended for use in hardware verification and for
customer use as the definitive cycle-accurate
model of the machine. The instruction-accurate
model can be built because there is no need to
model asynchronous system behavior accurately
in 2 time sense from the perspective of the
operating system. The model itself is simpler and
a properly designed instyuction-accurate model
should run 5 or more times faster than a cycle-
accurate model. The cycle-accurate model is
required for hardware development since this
model is the “golden” model of the machine.

There are variations in use of these models as
applied to 2 verification system. The instruction-
accurate model is typically a freestanding tool that

is supplied to software developers. The variations -

in use regarding the role played by a cycle-
accurate model in a verification system are much
more interesting. Fundamentally, there are two
main ways to integrate a cycle-accurate model
into a verification system. The first way is to
simply generate an output file from the
instruction-accurate model that contains time,
network inputs, network outputs, and relevant
state information for use by a testbench written in
the preferred HDL.. This method has some definite
advantages. First among these advantages is the
ability to run the directed functional verification
test programs against the architectural model only
once and save the results on disk drives.

The file generated by the instruction-accurate
model may also be used to supply test and
compare vectors to a hardware accelerator. It is
typically very inefficient to use a hardware
accelerator of any kind in an interactive fashion.
Doing this de-rates the hardware accelerator’s
performance to little better than the performance
of the attached software-based simulator.

427

Test/Comnpare

Patterns
Model

v ¥

Comparator

Emulation

Fig. 1 Emulator testhbench

'The most efficient way to use the hardware
accelerator is to create a file, as described above,
with which to load the accelerator’s memory
model. The accelerator contains a testbench with
the system chip on one side of a comparator and
the test/compare memory on the other side of the
COmMparator.

The second method used for instruction-accurate
mode! integration in a functional verification
system is to attach the instruction-accurate mode}
to the FHDL-based testbench through a language
interface. For some, this is the preferred
impiementation method. Such verification systems
could be called design-centered. This is due to the
fact that all external interfaces to the system
design being verified are made through the
relevant HDL's language interface. This interface
may be an extremely inefficient way to pipe data
in and out of the HDL simulator, but in some
shops the mantra is “this is what we’ve always
done”. A requirement of efficient verification
system design is to minimize use of the HDL's
language interface as much as possible.

Another problem that arises in the use of the DL
simulator’s language interface is that the VHDL
language, for example, does not provide a
standard C/C-+~+ language interface. Some VHDL
simulators do not integrate well with C4+
programs. Each VHDL simulator requires a
separate interface to be developed. Thus the
cycle-accurate model’s HDL interfaces in a truly
general-purpose, core-based verification system
can be unnecessarily complex programs to write.
On the Verilog side, there is only one C Language
interface, on the VHDL side, 14 or more.
Products exist which claim to obviate the need to
create many different C interfaces.

One problem in both of these approaches is that
most implementations of architectural model
integration with a HDL simulator are not easily



portable actoss levels of design hierarchy. This
means that a completely different testbench needs
to be created for each block of the CPU, for each
peripheral block, for the CPU core, and finally,
for the system. The HDL testbenches must also
use the C interface methodology provided to
communicate with a myriad of different stimulus
generators, a generator for each different external
input interface of each block, core module, and
system implementation. Thus we see the advent of
testbench generators.

Simulation

gl Model

Clock & Reset
Block

Fig. 1 Testbench Structure

While a particular simulation approach may be
very appropriate for an existing architecture used
as a core, it may make little or no sense as an
efficient solution for a modern core-centric
verification system. This is especially true if the
simulation approach is intended for use by many
different design groups within a large corporation
and potentially by the company’s customers. The
key to success in a core-based methodology is for
flexibie re-configuration of the architectural
model. Most, if not all, systems do provide this
ability. The typical solution by vendors of existing
architectures is to present the architectural model
of their core to a customer and let the customer
solve the system problems.

Formal verification methods are now being
adopted by various organizations. They fall into
two categories: intelligent netlist comparison
programs, and mode] checkers. While they have a
place in an overall verification system, it is not the
purpose of this paper to discuss formal
verification integration issues.

IIl. TIMENG ACCURATE VERIFICATION SYSTEM
FEATURES

The new approach to simulation use in a
verification system for a core-based methodology

- proposed in this paper has been implemented on a

core-based design project. It is intended to solve
the problems of multiple, inefficient C language
interfaces in complex testbenches, at the same it
introduces a new method of operation in
verification simulation methodology tailored to a
hardware/software co-verification environment
capable of shortening the overall design process,
and thus reducing iime-to-market.

The approach taken in the design and integration
of the cycle-accurate architectural simulation

- model is the key to the suceess of the new method.

428

The key concept for the functional verification
systern for this new machine architecture was 1o
confront and to solve system problems from the
beginning,

Solution of system probierns began with the
selection of the implementation language of the
simulator. The language chosen was C++ for the
cycle-accurate model while C was chosen for the
instruction accurate model. C was chosen for the
instruction-accurate model since it would enz e a
faster implementation to be built in jess memory,
a factor to consider for PC ports. This is
especially true since extensive software simulation
typically requires millions of cycles of simuiation.
C++ was chosen for the cycle-accurate “golden”
model since a2 C++based architectural model can
provide a solution to the integration of arbitrary
collections of models and to the implementation
of various configurations. Thus, it is possible not
only to describe the core with any collection of
peripherals; it is also possible to describe the core
with any coliection of peripherals connected to
any arbitrary system simulation. The verification
group using this approach need not connect to an
exiernal system model initially, since it may be
quite difficult using a “real” system model to
model timing-based corner cases which may exist
between the various peripheral ports of a given
system chip design. The hardware verification
group would design and connect Peripheral
Transaction Generators (PTG) to the “aolden”
model to cover the corner cases or reuse those
supplied by a vendor in the case of standard
peripherals.

The software design group faces a different
problem. They must implement the appropriate
control program for a particular application. For
example, the CPU core may be used to implement
an automotive engine controlier. For example, the
system chip design to meet the requirements of an
automotive engine controller may have a certain



complement of peripherals. The peripheral
behavior, once defined is sufficient for the
software group to proceed to selection of an
RTOS, compiler, and software system design.

With the “golden” model they are able to verify
that the program they are developing is, in fact,
code that will properly execute on the core, but
one link is still missing. If they had in their
possession a computational model of 2 new
engine that could be integrated with the “golden”
mode} described here, it would be possibie to
create an overall system simulation of the engine.
This simulation can enable code debug even
before a new engine is ready.

The above proposal solves system-level
hardware/software co-design problems; it is also a
step in the direction of solving some lower level
problems described above. The inefficient
language interface problem may now be
addressed. The design of this “golden” model also
addresses the complexity issue in a HDL
testbench. Both goals are simply accomplished by
removing the complex RTL descriptions for test
. jpattern generators for the peripheral ports from
+the HDL and replacing them with the PTGs easily
configured and easily integrated C++ modules.
This permits easy application of recorded real
system data to the peripheral ports of the system
chip being modeled. Additionally it reduces the
testbench to essentially a large comparator. The
application of the vectors to the testbench has
been made more efficient by the elimination of
different peripheral port calls across the HDL
simulator’s C interface to only one call to a
system model.

We have been able to improve efficiency of the
simulation system and 1o permit software
development to proceed earlier in a design cycle.
This also allows debug of new peripherals for a
new system to proceed earlier since a defined
system structure ready to be filled in already
exists. A by-product of this is the speed up of the
development of the core itself. This is
accomplished by applying the high-level system
concepts within the core itself. The core is itself, a
system of blocks, which communicate viz a
defined interface to the rest of a system chip. The
core has a bus interface, a memory interface, and
an interface to an interrupt controller. Thus it is
possible to build a bus controller, a bus
transaction generator, an interrupt generator, and
amemory in C++ for connection to the core

429

model. The core is built of a collection of
execution units which themselves have defined
interfaces. Assuming the cycle-accurate model
was a detailed model of the pipeline and how the
various block interface signals changed during
instruction execution, it conld create test vectors
and compare patterns for each core block
independent of the others while it, itself was
executing a program running at the system level.
This has been accomplished.

The cycle-accurate model permits each block of
the core to be fully regressed against a system-
level test suite before the entire core even exists.
Therefore, when each block is integrated to build
the core, it has already been system tested.

IV. FUNCTIONALLY ACCURATE VERIFICATION
SYSTEM FEATURES

A practical problem early in design
mmplementation is that the RTL code developed
may not exactly follow the machine’s pipeline
specification. This is a problem because the clock-
relative timing of what appears on the machine’s
busses does not agree with what the pipeline
specification or the architectural specification
predicts. This means that early in the design cycle
the cycle-accurate model will not match the
hardware, not because of functional mismatches
but because of mismatches caused by bubbles in
the pipeline, for example. During this phase of
design, the cycle-accurate model is useless.

The fastest way to full functionality and pipeline
and timing accuracy is through stages. The first
design stage being the creation of a fully
functional RTL machine description. During this
phase of design it is necessary to determine test
pass/fail through comparison of states on selected
busses regardless of timing. Thus the cycle-
accurate model must have a second operationat
mode incorporated.

V. SUMMARY AND RESULTS

Preliminary results regarding verification
functionality are very encouraging. Using the
cycle-accurate model and the instruction-accurate
mode] operating systems have been ported.
Industry standard benchmarks have been
successfully run producing results, which created
certain architecture changes. Verification of



TriCore has progressed starting at the base stage
of functional comparison. Essentially the new
verification system is applying the principies of
software reliability. Software reliability states that
defects in a software system will be best detected
when two disparate implementations of a system
specification are compared with each other. Using
this methodology, we project a reduction in core
design cycie of 3 months.

430



