Nano Science and Technology Institute
Nanotech 2014 Vol. 2
Nanotech 2014 Vol. 2
Nanotechnology 2014: MEMS, Fluidics, Bio Systems, Medical, Computational & Photonics
 
Chapter 3: Biosensing, Diagnostics & Imaging
 

Ultrasensitive and rapid immuno-detection of bacteria and protein biomarkers using field-effect enzymatic detection

Authors:S.-T. Yau
Affilation:Cleveland State University, US
Pages:173 - 176
Keywords:ultrasensitive detection, rapid detection, immunoassay, pathogen detection, microorganism detection, biomarker detection
Abstract:A novel immuno-detection system has been constructed by incorporating the newly invented field-effect enzymatic detection (FEED) technique the immunosensing technique to demonstrate a novel detection platform. The demonstration consists of the detections of three biomarkers and two bacteria. The detected biomarkers include CA125, PSA in serum and AMACR (a novel marker for prostate cancer) in serum and urine. The PSA and AMACR detections were performed on the femto gram/mL level. The two detected bacteria are E. coli and Shigella. E. coli was detected in milk and meat juice with detection limits on the order of 10 CFU/mL. Because of the intrinsic amplification provided by FEED, the detection was performed without the culture-based amplification, resulting in a significantly shortened assay time of 1 hr. The detection system was realized on screen printed electrodes (SPE). This method, compared with current detection methods, provides three distinctive advantages: (1) ultrasensitive detection of bacteria (10 CFU/mL) and biomarkers (fg/mL) in complex matrices, (2) real-time/rapid detection (1 hour) of bacteria without the culture process, and (3) low-cost detection (<$3/SPE). The patented method can be used as an ultrasensitive, rapid detection platform for point-of-care, disposable and low-cost applications.
ISBN:978-1-4822-5827-1
Pages:570
Hardcopy:$209.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map