Nano Science and Technology Institute
Nanotech 2013 Vol. 3
Nanotech 2013 Vol. 3
Nanotechnology 2013: Bio Sensors, Instruments, Medical, Environment and Energy (Volume 3)
 
Chapter 6: Solar Power Technologies & Materials
 

High Temperature Nanostructures for Thermophotovoltaics

Authors:H.J. Lee, K. Smyth, S-G Kim
Affilation:Massachusetts Institute of Technology, US
Pages:505 - 508
Keywords:selective emitter, photonic crystal
Abstract:A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of nano-engineered materials and devices at high operational temperatures. Selective tungsten emitters based on 2-D photonic crystals have been found effective in controlling the motion of photons at certain wavelengths for thermophotovoltaic (TPV) systems. The nano-structured patterns, however, easily lose their structural integrity at high temperatures, which would disrupt the tight tolerances required for spectral control of the selective emitters. A novel idea of flat surface photonic crystal (FSPC) is developed to circumvent the surface diffusion at high temperatures. The key idea of FSPC is to make optically micro/nano structured but geometrically flat surface, which is fabricated by plugging the nanostructure with the IR-transparent ceramic. A silicon FSPC is tested at an equivalent homologous temperature to tungsten at 1200°C for hours and is observed to exhibit minimal physical and spectral degradation in contrast to the severe performance deterioration observed with a conventionally prepared 2D PhC. Combining this result with an Arrhenius accelerated lifetime model, an equivalent tungsten device is anticipated to survive over 40 years at >800°C, demonstrating a significant step toward feasible FSPC selective emitter design for commercial implementation of solar TPV.
ISBN:978-1-4822-0586-2
Pages:806
Hardcopy:$209.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map