Nano Science and Technology Institute
Nanotech 2013 Vol. 3
Nanotech 2013 Vol. 3
Nanotechnology 2013: Bio Sensors, Instruments, Medical, Environment and Energy (Volume 3)
 
Chapter 6: Solar Power Technologies & Materials
 

Enhancement of GaAs solar cell efficiency by type-II GaSb quantum dots located outside of the depletion region

Authors:A. Kechiantz, A. Afanasev, J.-L. Lazzari
Affilation:The George Washington University, US
Pages:592 - 595
Keywords:intermediate band, quantum dot, solar cell, GaAs/GaSb
Abstract:Experiments have shown that extrinsic intermediate band (IB) states, for instance, formed by artificial quantum dots (QDs), located in the depletion region participate in electron-hole recombination. This facilitates dramatically the dark current and reduces the open circuit voltage of IB solar cells. On the other hand, spatial separation of IB-states from the depletion region adds more flexibility for the cell design, eliminates dark current leakage through IB-states, and limits recombination through IB-states. The later enables generation of additional photocurrent by two-photon resonant absorption of concentrated sunlight in such QDs. In this report we present a model of a new GaAs IB solar cell with strained GaSb type-II QDs spatially separated from the depletion region into the p-doped part of the cell. We use continuity equations enforced by the detailed balance principle and non-radiative recombination through IB-states to calculate both photocurrents and efficiency of the cell. Our calculation shows that the newly proposed design may increase efficiency of GaAs solar cells from 30% to 50% in response to concentration of sunlight from 1-sun to 500-sun. Noteworthy, though non-radiative recombination in QDs degrades the efficiency, it is still above the Shockley-Queisser limit by 5% to 10%.
ISBN:978-1-4822-0586-2
Pages:806
Hardcopy:$209.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map