Nano Science and Technology Institute
Nanotech 2012 Vol. 1
Nanotech 2012 Vol. 1
Nanotechnology 2012: Advanced Materials, CNTs, Particles, Films and Composites (Volume 1)
Chapter 10: Nanostructured Materials & Devices

Au nanoelectrodes for breath analysis

Authors:M. Righettoni, A. Tricoli, S.E. Pratsinis
Affilation:ETH Zurich, CH
Pages:764 - 766
Keywords:breath analysis, nanoparticles, gas sensor
Abstract:New medical diagnostic methods such as non-invasive human breath analysis bear the potential of drastically reducing medical costs as a greater amount of automatization is possible. SnO2 is one of the most utilized and best understood prototype gas sensor. It has high sensitivity to several analyltes. However, its selectivity toward other breath component needs to be enhanced. Additionally, the integration of nanoparticles in sensors is a key technological development for advancing their performance, miniaturization and decrease in power consumption. Frequently, however, the benefit of nanoscale is lost by poor electrical conductivity through such nanoparticle structures. Thus, it is challenging to achieve both miniaturization with maximized performance and attractive conductivity. Here, a novel asymmetric electrode assembly is described that reduces the resistance of a nanostructured layer and increases its selectivity to acetone. Gold nanoparticles serving as nanoelectrodes are stochastically deposited by flame spray pyrolysis below a functional film decreasing the effective length of the resistive components. The feasibility of this assembly is demonstrated with solid state sensors having controlled resistance and exceptionally high sensitivity to acetone. Au nanoparticles also enable detection of acetone at relatively low temperatures with still high sensor response. Furthermore, the selectivity to acetone was drastically increased.
Order:Mail/Fax Form
© 2017 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map