Nano Science and Technology Institute
Nanotech 2009 Vol. 1
Nanotech 2009 Vol. 1
Nanotechnology 2009: Fabrication, Particles, Characterization, MEMS, Electronics and Photonics
Chapter 4: Nanoscale Characterization

Synthesis and Characterization of Metastable Nanocrystalline Cobalt

Authors:C. Osorio-Cantillo, O. Perales-Perez
Affilation:University of Puerto Rico, US
Pages:295 - 298
Keywords:magnetic nanoparticles, polyol process
Abstract:Applications of elemental cobalt are consequence of its phase-dependent magnetic properties; the anisotropic high-coercivity hcp-Co phase is preferred for permanent magnet applications, while the more symmetric low coercivity fcc- and, pseudo-cubic epsilon-Co can be used in soft magnetic applications involving power electronics and magnetic write heads. The present work addresses the synthesis and characterization of nanocrystalline cobalt particles produced through a modified polyol-based approach conducive to the formation of fcc-, hcp- or epsilon-Co phases. Metastable epsilon-Co and hcp-Co were exclusively formed in presence of trimethylene-glycol. In turn, fcc-Co or mixture of fcc/hcp-Co phases were produced in tetraethylene-glycol. The average crystallite size in all cases ranged between 10 nm and 13 nm. Magnetic measurements confirmed the strong influence of synthesis conditions on crystal structure and hence, on magnetic properties of nanocrystalline cobalt. The coercivity of the products varied from 338 Oe to 550 Oe depending of the presence of the different cobalt structures.
Synthesis and Characterization of Metastable Nanocrystalline CobaltView PDF of paper
Order:Mail/Fax Form
© 2017 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map