Nano Science and Technology Institute
Nanotech 2008 Vol. 3
Nanotech 2008 Vol. 3
Nanotechnology 2008: Microsystems, Photonics, Sensors, Fluidics, Modeling, and Simulation - Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, Volume 3
 
Chapter 7: Compact Modeling
 

Compact Models for Double Gate MOSFET with Quantum Mechanical Effects using Lambert Function

Authors:H. Abebe, H. Morris, E. Cumberbatch, V. Tyree
Affilation:University of Southern California, ISI, US
Pages:849 - 852
Keywords:compact device modeling, MOSFET, quantum effects
Abstract:This paper is a continuation of the work we presented in the 2006 IEEE UGIM Proceedings. Iterative compact device models with quantum mechanical effects for a Double Gate (DG) MOSFET are presented using the Lambert function approach. The quantum model is based on the triangular potential and band gap widening approximations on the intrinsic electron density. The channel current model simulation results are shown in Figure 1-2 and in Figure 3 the charge and capacitance simulations are compared with the Schrödinger-Poisson one dimensional numerical results that are generated from SCHRED (see attached).
Compact Models for Double Gate MOSFET with Quantum Mechanical Effects using Lambert FunctionView PDF of paper
ISBN:978-1-4200-8505-1
Pages:940
Hardcopy:$159.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map