Nano Science and Technology Institute
Nanotech 2007 Vol. 2
Nanotech 2007 Vol. 2
Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, Volume 2
 
Chapter 5: Drug Delivery
 

Development of a Magnetically Triggered Drug Delivery System using Thermoresponsive Grafted Polymer Networks with Magnetic Nanoparticles

Authors:I. Ankareddi, M.L. Hampel, M.K. Sewell and D-H Kim
Affilation:The University of Alabama, US
Pages:431 - 434
Keywords:thermosensitive, LCST, grafted polymeric drug delivery system, magnetic nanoparticles
Abstract:A thermosensitive grafted polymeric system which can be triggered to release the loaded drug with an increase in temperature, induced by a magnetic thermal heating event (Brazel et al., 2006) was developed. The desirable carrier will have minimal release at 37 °C so that the system can be localized (e.g., to cancer cells) prior to activation of the delivery of medication. The grafted hydrogel system is shown to exhibit a desirable positive thermal response with an increased drug diffusion coefficient for temperatures higher than physiological temperature (Ankareddi and Brazel, 2006). Such polymeric drug delivery systems are synthesized with varying graft compositions, graft densities and drug types and their drug diffusivities calculated and compared to determine the optimum system design. Varying amounts of magnetic FePt nanoparticles are incorporated to arrive at a composition that would distribute the nanoparticles without agglomeration. Polymer matrices with incorporated magnetic nanoparticles are analyzed and characterized for uniform distribution and heating within the hydrogel, triggered by an external alternating current magnetic field.
Development of a Magnetically Triggered Drug Delivery System using Thermoresponsive Grafted Polymer Networks with Magnetic NanoparticlesView PDF of paper
ISBN:1-4200-6183-6
Pages:838
Hardcopy:$139.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map