Nanotech 2006 Vol. 3
Nanotech 2006 Vol. 3
Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, Volume 3

MEMS, NEMS & Sensing Chapter 3

Biocompatible Hybrid System Integration of Silicon Based Neural Interface Device

Authors: P. Tathireddy, S. Chakravarthy, J. Hsu, M. Klein, H. Oppermann, L. Rieth, R. Harrison, R.A. Normann, F. Solzbacher

Affilation: University of Utah and Fraunhofer Institute, Germany, United States

Pages: 357 - 360

Keywords: flip chip bonding, stacked hybrid integration, electrode arrays, biocompatible

Abstract:
Chronically implantable wireless neural interfaces require biocompatible and stable high density integration of sensing, data processing, communication and power supply. The objective of this research was to develop a biocompatible wafer level integration technology for a stacked hybrid assembly of silicon, polyimide, ceramics and SMD components for the next generation wireless neural interface. The device consists of a 100 channel amplifier, data compression, RF communication, power recovery module, two 60-turn planar coils, SMD components and a Utah Electrode Array (UEA) with metallization on the backside. The coils can be operated as single or switched in parallel or series coils to modify frequency range and voltage gain.

Biocompatible Hybrid System Integration of Silicon Based Neural Interface Device

ISBN: 0-9767985-8-1
Pages: 913
Hardcopy: $119.95