Nanotech 2005 Vol. 3
Nanotech 2005 Vol. 3
Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 3

MEMS Modeling and Design Chapter 9

Three Degrees of Freedom Thermal Microactuator

Authors: A. Pasupuleti, F. Sahin, W.W. Walter, A. Raisanen, J.L. Hebding and K.D. Hirschman

Affilation: Rochester Institute of Technology, United States

Pages: 569 - 572

Keywords: thermal actuator, MEMS design, out-of-plane rotation

This research is focused on the design and fabrication of a three-degrees-of-freedom (DOF) polyimide-based thermal microactuator. The proposed actuator can have displacements simultaneously in the X, Y and Z axes. The operation of the microactuator is based on thermal expansion of polyimide. The displacement in the three axes is obtained by placing individually controllable heaters on the polyimide surface such that they produce localized expansion. The performance of the microactuator was evaluated by using the physical properties of materials and finite element analysis (FEA) using ANSYS software. The effects of shape, size and the material properties of the actuator as well as the heater elements were analyzed and optimal designs were derived. Simulation results indicate deflections up to 0.87 µm in the X-axis, 11µm in the Y-axis and 0.2 µm in the Z-axis. These designs are being fabricated using the process described in at the Semiconductor and Microsystems Fabrication Laboratory (SMFL) at RIT and the experimental results will be compared with the simulations.

Three Degrees of Freedom Thermal Microactuator

ISBN: 0-9767985-2-2
Pages: 786
Hardcopy: $109.95