Nano Science and Technology Institute
Nanotech 2005 Vol. 2
Nanotech 2005 Vol. 2
Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 2
Chapter 3: Carbon Nano Structures

Hybrid Nanomaterials for Active Electronics and Bio-Nanotechnology

Authors:X. Wang, R.R. Pandey, R. Lake and C.S. Ozkan
Affilation:University Of California, Riverside, US
Pages:215 - 217
Keywords:DNA, functional nanotubes, conjugation
Abstract:We describe self assembly processing of functional carbon nanotubes using single strand deoxyribonucleic acid (DNA) and peptide nucleic acid (PNA) fragments. Previous research has shown the self assembly of carbon nanotubes to quantum dots via a simple peptide bonding. Here, we make use of the DNA and PNA for self assembly of nanoscale components because of its spatial encoding capabilities which will be eventually useful for the integration of devices. During self assembly, first multiwalled carbon nanotubes have been functionalized via oxidation to introduce COOH groups at the nanotube ends. Amine functionalized ss-DNA and PNA fragments were attached to the COOH groups via the (1-ethyl-3-dimethylaminopropyl) carbodiimide HCl (EDC) coupling reaction. The resulting heterostructures have been characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy and energy dispersive spectroscopy. We have also conducted platinum metallization of DNA and PNA fragments to study the properties conductive biological linkages to inorganic components. The metallized nanotube-DNA and nanotube-PNA complexes have potential applications in future applications including nanoelectronics and sensors.
Hybrid Nanomaterials for Active Electronics and Bio-NanotechnologyView PDF of paper
Order:Mail/Fax Form
© 2017 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map