Nano Science and Technology Institute
Nanotech 2005 Vol. 1
Nanotech 2005 Vol. 1
Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 1
 
Chapter 6: Bio Nano Materials
 

IBAD Nanothick Bioceramic Incorporation on Metallic Implants for Bone Healing Enhancement. From Physico/Chemical Characterization to In-vivo Performance Evaluation

Authors:P.G. Coelho and J.E. Lemons
Affilation:University of Alabama at Birmingham, US
Pages:316 - 319
Keywords:nanothick coating, bone healing, bioceramic, characterization, biomechanical testing
Abstract:Preliminary data on in-vivo performance of nanothick bioceramic IBAD-coated metallic implants showed an increase in both osteoblastic activity and mechanical properties for bone surrounding these implants. The purpose of this study was to characterize a thin-film bioceramic coating obtained by Ion Beam Assisted Deposition (IBAD) on Ti-6Al-4V implants and evaluate its in-vivo performance in an animal model. Control (C) and IBAD-coated implants were analyzed through SEM, EDS, ion-milling + XPS for depth profiling, and thin-film XRD. 60 cylindrical implants were bilaterally placed in the tibias of 6 beagle dogs through sequenced surgical procedures and were biomechanically tested (torque) at 3 and 5 weeks in-vivo. No thin-film was detected by SEM, and the EDS Spectra for IBAD coated implants showed Ca presence. XPS showed Ca, P, Si, C, and O at outer layers with variable Ca/P ratios as a function of depth. XRD spectra revealed an amorphous microstructure for IBAD implants. Biomechanical tests showed that IBAD-coated implants had superior fixation competence compared to control implants at 3 and 5 weeks in-vivo. According to the results, it was concluded that the nanothick surface coating enhanced the biological response of bone to implant, supporting opportunities for increased bone healing response in clinical practice.
IBAD Nanothick Bioceramic Incorporation on Metallic Implants for Bone Healing Enhancement. From Physico/Chemical Characterization to In-vivo Performance EvaluationView PDF of paper
ISBN:0-9767985-0-6
Pages:844
Hardcopy:$109.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map