Nano Science and Technology Institute
Nanotech 2005 Vol. 1
Nanotech 2005 Vol. 1
Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 1
 
Chapter 4: Bio Nano Particles
 

Numerical Modelling of a Microfluidic Ultrasonic Particle Separator

Authors:R.J. Townsend, M. Hill, N.R. Harris, N.M. White and S.P. Beeby
Affilation:University of Southampton, UK
Pages:194 - 197
Keywords:acoustic separation, microfluidics, CFD, FEA, modelling
Abstract:Particles held in a fluid suspension and within an acoustic standing wave experience an acoustic radiation force. The force causes particles to move to the pressure nodes of the acoustic field creating a concentrate, contributing to the sensing of particles or cells. To predict the performance of devices relying on acoustic radiation forces and to assist with design, a simulation approach is used which combines several modelling techniques. Particle trajectories through the acoustic field and the resulting concentration profile are determined by resolving the forces experienced by particles numerically. This particle simulation model is further supported by more detailed analysis of the acoustic and fluid flow fields using finite element analysis and computational fluid dynamics, applicable to the microfluidic flow. These modelling techniques are applied to the simulation of a microfluidic ultrasonic particle separator, driven using a printed PZT transducer and relying on silicon and Pyrex etch fabrication. The device issues particle concentrated and clarified flow through two outlets, respectively. Test data taken from a fabricated device is used to evaluate the simulation approach which correlate well with eachother. The simulation approach is used successfully to redesign the acoustic and fluid geometry and to predict the influence of operating conditions.
Numerical Modelling of a Microfluidic Ultrasonic Particle SeparatorView PDF of paper
ISBN:0-9767985-0-6
Pages:844
Hardcopy:$109.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map