Nano Science and Technology Institute
Nanotech 2005 Vol. 1
Nanotech 2005 Vol. 1
Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 1
Chapter 10: Micro and Nano Fluidics Design and Phenomena

Electrokinetic Instabilities and Sample Stacking

Authors:H. Lin, M.H. Oddy and J.G. Santiago
Affilation:Stanford University, US
Pages:605 - 608
Keywords:electrokinetics, microfluidics, electrophoresis, sample preconcentration
Abstract:Microfabrication technology has enabled the application of electrokinetics as a method of performing chemical analyses and achieving liquid pumping in electronically-controlled microchip systems with no moving parts. This talk reviews progress at Stanford in the development of optimized field amplified sample stacking (FASS) for integration with on-chip capillary zone electrophoresis. FASS leverages conductivity gradients as a robust method of increasing sample concentration prior to electrophoretic separation. A major challenge to achieving robust, high-efficiency FASS is the role of electrokinetic instabilities (EKI) generated by a coupling of electric fields and ionic conductivity gradients. This coupling results in electric body forces in the bulk liquid that can generate temporal, convective, and absolute flow instabilities. Suppression and/or control of electrokinetic flow instabilities is critical as these conductivity-gradient-induced instabilities dramatically increase dispersion rates and thereby limit stacking efficiency. We have identified the key physical mechanisms involved in EKI; developed generalized models for heterogenous electrokinetic systems (applicable to both FASS and EKI); and validated these models with experiments. We have used our understanding of heterogenous electrokinetic systems to develop novel chip systems that can achieve signal increases of more than 12, 000 fold using FASS. This stacking ratio is over 100 times larger than previous on-chip FASS devices.
Electrokinetic Instabilities and Sample StackingView PDF of paper
Order:Mail/Fax Form
© 2017 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map