Nano Science and Technology Institute
Nanotech 2004 Vol. 3
Nanotech 2004 Vol. 3
Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show, Volume 3
 
Chapter 3: Atomic and Mesoscale Modelling of Nanoscale Phenomena
 

Molecular Dynamics (MD) Calculation on Ion Implantation Process with Dynamic Annealing for Ultra-shallow Junction Formation

Authors:O. Kwon, K. Kim, J. Seo and T. Won
Affilation:Inha University, KR
Pages:133 - 136
Keywords:molecular dynamics, kinetic monte carlo, ion implantation, diffusion, dynamic annealing
Abstract:In this paper, we report a molecular dynamics (MD) simulation of the ion implantation for nano-scale devices with ultra-shallow junctions. In order to model the profile of ion distribution in nanometer scale, the molecular dynamics with a damage model has been employed while the kinetic Monte Carlo (KMC) diffusion model was used for the dynamic annealing between cascades. The distribution of dopants during the ion implantation was calculated from the MD approach. The calculation has been performed for B with energies down to 100eV and dose 11014 ions/cm2. The B, As, and Ge implant has been simulated with the energies of 0.5, 1, 2, 4, 8, and16 keV and with dose 11014 ions/cm2 into Si , respectively.
Molecular Dynamics (MD) Calculation on Ion Implantation Process with Dynamic Annealing for Ultra-shallow Junction FormationView PDF of paper
ISBN:0-9728422-9-2
Pages:561
Hardcopy:$79.95
 
Order:Mail/Fax Form
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map