Nano Science and Technology Institute
Nanotech 2004 Vol. 2
Nanotech 2004 Vol. 2
Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show, Volume 2
Chapter 3: Compact Modeling

Compact, Physics-Based Modeling of Nanoscale Limits of Double-Gate MOSFETs

Authors:Q. Chen, L. Wang, R. Murali and J.D. Meindl
Affilation:Georgia Institute of Technology, US
Pages:114 - 119
Keywords:double-gate, scaling, threshold voltage, subthreshold swing, MOSFET
Abstract:Compact, physics-based models of subthreshold swing and threshold voltage are presented for double-gate (DG) MOSFETs in symmetric, asymmetric, and ground-plane modes. Applying these device models, threshold voltage variations in DG MOSFETs are comprehensively and exhaustively investigated using a unique, scale-length based methodology. Quantum mechanical effects and fringeinduced barrier lowering effect on threshold voltage, caused by ultra-thin silicon film and potential use of highpermittivity gate dielectrics, respectively, have been analytically modeled giving close agreement to numerical simulations. Scaling limits projections indicate that individual DG MOSFETs with good turn-off behavior are feasible at 10 nm scale; however, practical exploitation of these devices toward gigascale integrated systems requires development of novel technologies for significant improvement in process control.
Compact, Physics-Based Modeling of Nanoscale Limits of Double-Gate MOSFETsView PDF of paper
Order:Mail/Fax Form
© 2017 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map