Nano Science and Technology Institute
Nanotech 2003 Vol. 3
Nanotech 2003 Vol. 3
Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, Volume 3
Chapter 6: Nano Composites

Surface and Interface Characterization of Self-Assembled Copper Oxide Quantum Dots on SrTiO3(001) Surface

Authors:S. Thevuthasan, P. Nachimuthu, Y.J. Kim, I. Lyubinetsky, A.S. Lea, V. Shutthanandan, M.H. Engelhard, D.R. Baer, D.K. Shuh and D.W. Lindle
Affilation:Pacific Northwest National laboratory, US
Pages:278 - 281
Keywords:oxide nano structures, XPS, XANES, oxygen plasma assisted MBE
Abstract:Interface controlled nucleation and growth of two and three dimensional nano structures show unique structural, optical, electronic and vibrational properties due to the quantum confinement of charge carriers. When the size is sufficiently small, the three dimensional quantum dot structures show atom like discrete energy levels and several recent investigations were focused on tailoring these size effects in semiconductor technology, especially in electronic and optoelectronic applications. In general, the oxide quantum dots (OQD) have received much less attention and the growth and characterization of OQDs has been virtually unexplored. Recently we have successfully grown copper oxide QDs on SrTiO3(001) substrates using oxygen plasma assisted molecular beam epitaxy. Although the copper oxide QDs that were grown at low temperature (< 800 K) show mostly Cu2O phase, the QDs grown at higher temperatures appear to be consisting of Cu metal and Cu2O. In addition, a small amount of CuO was present in all the samples. Characterization of these materials has been a major challenge. Atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), x-ray absorption near edge spectroscopy (XANES) x-ray diffraction (XRD), Rutherford backscattering spectrometry and transmission electron microscopy (TEM) were used to characterize the surfaces and interfaces of these materials.
Surface and Interface Characterization of Self-Assembled Copper Oxide Quantum Dots on SrTiO3(001) SurfaceView PDF of paper
© 2017 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map