Nano Science and Technology Institute
Nanotech 2003 Vol. 2
Nanotech 2003 Vol. 2
Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, Volume 2
 
Chapter 12: Computational Methods and Numerics
 

Advanced Modelling Technique for Microscale Heat Transfer Analysis : Application to the flexible printed circuit microconnectors

Authors:V. Gatto, Y. Scudeller, O. Lottin
Affilation:l'Ecole Polytechnique de Nantes., FR
Pages:574 - 577
Keywords:compact model, thermal modelling, microconnectors
Abstract:The paper presents an advanced modelling technique of 3D multi-scale heat conduction problem for the thermal analysis of microsystems and especially flexible printed circuit microconnectors (FPC). Nowadays, more and more applications in automotive and aerospace require interconnect systems of high density working in harsh environment. These systems have to be able to supply many input/output signals and high current levels. In the future, miniaturisation and increase of power densities pose crucial thermal questions for the next generation of interconnect systems such as FPC. Designed originally to replace wiring harnesses, FPC microconnectors are basically composed of thin copper lines of various shapes and sizes, forming a complex circuit pattern integrated in an insulating polymer films. The technique is based on an original approach consisting to transform the 3D heat conduction problem in the combination of two heat conduction problems, basically 1D and 2D. Results are in very good accord with 3D Finite Element model. Experiments have been set up to validate also the thermal model.. The experimental and calculated temperatures are in good accordance and does not exceed 3 % for the hot spot at the middle of the FPC.
Advanced Modelling Technique for Microscale Heat Transfer Analysis : Application to the flexible printed circuit microconnectorsView PDF of paper
ISBN:0-9728422-1-7
Pages:600
Up
© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map