Nano Science and Technology Institute
Nanotech 2003 Vol. 1
Nanotech 2003 Vol. 1
Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, Volume 1
Chapter 11: MEMS Design and Application

Superharmonic Resonance of an Electrically Actuated Resonant Microsensor

Authors:E.M. Abdel-Rahman and A.H. Nayfeh
Affilation:Virginia Polytechnic Institute and State University, US
Pages:312 - 315
Keywords:MEMS, resonant sensors, forced vibrations, superharmonic resonance
Abstract:We investigate the response of a microbeam-based resonant sensor to a superharmonic electric actuation. The model incorporates the nonlinearities associated with moderately large displacements and electric forces. The method of multiple scales is used to obtain two first-order nonlinear ordinary-differential equations that describe the modulation of the amplitude and phase of the response and its stability. We present typical resonator frequency-response and force-response curves. The curves demonstrate the existence of multivalued solutions. These curves consist of three branches which meet at two saddle-node bifurcation points. The results provide an analytical tool to predict the microsensor response to a superharmonic excitation, specifically the locations of sudden jumps and regions of hysteretic behavior, thereby enabling designers to safely use this signal as a measuring signal.
Superharmonic Resonance of an Electrically Actuated Resonant MicrosensorView PDF of paper
© 2017 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map