MSM 2000
MSM 2000
Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems

Quantum Devices Chapter 10

Modeling Artificial Molecules Composed of Coupled Quantum Dots

Authors: R. Akis and D. Vasileska

Affilation: Arizona State University, United States

Pages: 441 - 444

Keywords: quantum dots, heterostructures, mesoscopic, chaos, periodic orbits

Recently, there has been much interest in coupled quantum dots. With individual dots, if the energy levels can be resolved, then one can think of a dot as representing an "artificial atom" [1]. Thus, fabricating multiple quantum dots by using a split metal gate pattern over a GaAs-AlGaAs heterostructure, and allowing the dots to couple via quantum point contacts (QPCs), provides a way of creating "artificial molecules"[2]. Modeling such structures using a finite difference approach, we obtain the self-consistent confining potentials that are used in a 2-dimensional Schrˆdinger solver. The eigenstates of the resulting coupled systems show hybridization effects analogous to that of true molecules. Moreover, many of the eigenstates of these systems show evidence of wave function scarring, a phenomenon where the probability amplitude of the eigenstate is maximized along the path of a classical trajectory.

Modeling Artificial Molecules Composed of Coupled Quantum Dots

ISBN: 0-9666135-7-0
Pages: 741