Nano Science and Technology Institute

DNA Engine Observed in Real Time Traveling Along Base Pair Track

Scientists at Kyoto University and the University of Oxford have succeeded in creating a real time, programmable molecular transport system

Story content courtesy of Kyoto University

Resembling a monorail train, the system relies on the self-assembly properties of DNA origami and consists of a 100 nm track together with a motor and fuel. Using atomic force microscopy (AFM), the research team was able to observe in real time as this motor traveled the full length of the track at a constant average speed of around 0.1 nm/s.

"The track and motor interact to generate forward motion in the motor," explained Dr. Masayuki Endo of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS). "By varying the distance between the rail 'ties,' for example, we can adjust the speed of this motion."

The research team, including lead author Dr. Shelley Wickham at Oxford, anticipates that these results will have broad implications for future development of programmable molecular assembly lines leading to the creation of synthetic ribosomes.

Funding for the research was provided by the Engineering and Physical Sciences Research Council (EP/G037930/1), the Clarendon Fund, the Oxford-Australia Scholarship Fund, the CREST program of the Japan Science and Technology Agency (JST), and the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

RSS feed of Nano World News

↑ Back to Nano World News™

© 2014 Nano Science and Technology Institute. All Rights Reserved.
Terms of Use | Privacy Policy | Contact Us | Site Map

Fatal error: Call to undefined function share_scripts() in /export/home/apache/httpd-nrc/docs/news/item.html on line 36