Partnering Events:




Unified Regional Surface Potential for Modeling CommonGate Symmetric/Asymmetric DoubleGate MOSFETs with Any Body Doping
G.H. See, X. Zhou, G. Zhu, Z. Zhu, S. Lin, C. Wei, J. Zhang, A. Srinivas Nanyang Technological University, SG
Keywords: asymmetric doublegate, explicit surface potential, unified regional
Abstract: Doublegate MOSFET is one of the key potential devices to allow further extension of CMOS technology scaling. The compact modeling community faces great challenges to model the physical effects due to the coupling of the two gates. The inputvoltage equation can be derived from the first integral of the Poisson equation, but it is not sufficient to solve for the twovariable implicit equation. Most assumed that only onecarrier type (i.e., electrons for nMOS) contributes to transport, although its validity has been studied only recently with a rigorous iterative solution of ellipticintegrals that considered both types of carriers (electrons and holes).However, the assumption of ignoring dopant in the Poisson solution is strictly valid only for ideal (pure) semiconductors that do not practically exist. Even for undoped body, unintentional dopant always exist, which would make the second integral of Poisson equation theoretically impossible. BSIMMG has included the effect of body doping in the surfacepotential computation through the perturbation approach. The surface potential behavior follows the physical structures but it involves multiple iterations in different regions, which can be computational expensive for compact modeling. In this work, regional surface potentials are solved explicitly and unified for a singlepiece solution.
Nanotech 2008 Conference Program Abstract
