2007 NSTI Nanotechnology Conference and Trade Show - Nanotech 2007 - 10th Annual

The binding site interactions between 7-chloro-tetracycline and the Tet Repressor

P.H.S. de Bruin, M.Z.S. Flores, E.W.S. Caetano, B.S. Cavada and V.N. Freire
Universidade Federal do CearĂ¡, BR

Keywords:
TetR, tetracycline, DFT

Abstract:
Tetracyclines are a class of broad spectrum antibiotics whose use has been limited by the emergence of bacterial resistance. The most common mechanism of resistance is regulated by the repressor protein, TetR. The structure of the complex between 7-chloro-tetracycline (7ClTc) and TetR of class D (TetR) has been previously determined by X-ray diffraction. The binding site is composed primarily of fourteen residues. The goal of the present study is to analyze the ligand-protein interaction in the binding site. This analysis was made by successive Density Functional Theory (DFT) energy calculations. The calculations were performed using the Generalized Gradient Approximation (GGA) and the Becke-Li-Yang-Par hybrid functional (BLYP). We have obtained the bond energies between 7ClTc and each residue of the pocket, which revealed the key interactions of the binding site. Gln116, Met177, His64, Glu147 and His100 showed the strongest bond energies with 7ClTc and its attached Mg - waters complex. This matches almost perfectly with experimental data showing that these residues are essential to produce the necessary conformational rearrangements on TetR. Also, the mapping of the connections in the binding site is important to allow rational design of small molecules that would induce a TetR transcriptional regulator more effectively.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors Keywords

Nanotech 2007 Conference Program Abstract

 
 

Names, and logos of other organizations are the property of those organizations and not of NSTI.
This event is not open to the general public and NSTI reserves the right to refuse admission and participation to any individual.