2007 NSTI Nanotechnology Conference and Trade Show - Nanotech 2007 - 10th Annual

The Effect of Nanoparticle Distribution on The Structure and Properties of Palladium/Polycarbonate Nanocomposites

S.V. Atre, O.P. Valmikanathan, V.K. Pillai, I.S. Mulla and O. Ostroverkhova
Oregon Nanoscience & Microtechnologies Institute, US

Keywords:
nanocomposites, electrical conductivity, glass transition temperature, transmittance

Abstract:
We report the synthesis of palladium (Pd)/polycarbonate (PC) nanocomposites as well as their morphological, thermal, optical and electrical properties. Pd nanoclusters were produced by the reduction of palladium chloride using a variation of the Brust’s method. Isolated Pd nanoclusters were formed in the absence of PC in the reaction mixture (ex situ method) while agglomeration of Pd nanoclusters was noticed in the presence of PC in the reaction mixture (in situ method). Fourier transform infrared spectroscopy (FTIR) of the in situ film samples revealed unique chemical interactions of Pd nanoclusters with the carbonyl group of the polymer. Thermogravimetric analysis (TGA) indicates the presence of Pd significantly improves the thermal stability of the nanocomposites, as evidenced by the enhanced onset of degradation. The glass transition temperature (Tg), as determined by differential scanning calorimetry (DSC), decreases. The optical properties of nanocomposites at various Pd nanocluster concentrations were found to be dependent on the distribution. The electrical conductivity shows a dramatic difference between these nanocomposites revealing a semi-conducting nature for the in situ sample and an insulating nature for the ex situ sample.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors Keywords

Nanotech 2007 Conference Program Abstract

 
 

Names, and logos of other organizations are the property of those organizations and not of NSTI.
This event is not open to the general public and NSTI reserves the right to refuse admission and participation to any individual.