2007 NSTI Nanotechnology Conference and Trade Show - Nanotech 2007 - 10th Annual

Increasing efficiency of photovoltaics via surface plasmon polariton scattering effects in metallic nanostructures

E.T. Yu
University of California, San Diego, US

surface plasmon, plasmon, photovoltaic, solar, energy, nanotechnology

Metallic nanostructures can exhibit pronounced absorption and scattering effects at optical frequencies due to the existence of collective electron excitations known as surface plasmon polaritons. These effects have been exploited in a variety of applications ranging from molecular spectroscopy to biological tagging to production of colored glass artifacts. We have recently demonstrated that scattering from metal nanoparticles placed in proximity to a solid-state semiconductor photodiode can be engineered to yield increased optical absorption and photocurrent generation over a broad range of visible wavelengths, and have applied this concept to thin-film amorphous silicon photovoltaic devices to achieve substantial increases in energy conversion efficiency. Specifically, low densities of metal nanoparticles integrated with an amorphous silicon photovoltaic device have yielded increases in short-circuit current and energy conversion efficiency of 1.08-1.13x, and numerical simulations indicate that, at higher particle densities, increases of 1.4x should be attainable. These results and a variety of related approaches to improving efficiency of photovoltaics will be discussed.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors Keywords

Nanotech 2007 Conference Program Abstract


Names, and logos of other organizations are the property of those organizations and not of NSTI.
This event is not open to the general public and NSTI reserves the right to refuse admission and participation to any individual.