2007 NSTI Nanotechnology Conference and Trade Show - Nanotech 2007 - 10th Annual

Nano-Surface Behavior of Osteoblast Cell-Cultured Ti-30(Nb,Ta) with Low Elastic Modulus

H.C. Choe, Y.M. Ko and W. Brantley
Chosun University, KR

nano surface, osteoblast, cell culture, Ti-Nb, Ta Alloy

Ti and Ti-alloys have good biocompatibility, appropriate mechanical properties and excellent corrosion resistance. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus (100 GPa) than cortical bone (20 GPa). Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. Objective: The electrochemical behavior of surface-modified and MC3T3-E1 cell-cultured Ti-30(Nb,Ta) alloys with low elastic modulus have been investigated using various electrochemical methods. Methods: Surfaces of test samples were treated as follows: 0.3 m polished; 25 m, 50 m and 125 m sandblasted. Specimen surfaces were cultured with MC3T3-E1 cells for 2 days. Average surface roughness (Ra) and morphology of specimens were determined using a surface profilometer, OM, and FE-SEM. Corrosion behavior was investigated using a potentiostat(EG&G PARSTAT 2273), and electrochemical impedance spectroscopy was performed (10 mHz to 100 kHz) in 0.9% NaCl solution at 36.5±1oC. Results: The microstructures of the Ti-30(Ta,Nb) alloys had a needle-like appearance. The Ra of polished Ti-30Ta and Ti-30Nb alloys was lower than that of the sandblasted Ti alloy. Cultured cells displayed round shapes. For polished alloy samples, cells were well-cultured on all surfaces compared to sandblasted alloy samples. In sandblasted and cell-cultured Ti-30(Nb,Ta) alloy, the pitting potential decreased and passive current density increased as Ra increased. Anodic polarization curves of cell-cultured Ti alloys showed unstable behavior in the passive region compared to non-cell-cultured alloys. From impedance tests of sandblasted and cell-cultured alloys, the polarization resistance decreased as Ra increased, whereas, Ra for cell-cultured Ti alloys increased compared to non-cell-cultured Ti alloys. Conclusions: The corrosion resistance of these alloys decreases as surface roughness increases. Cell-cultured surfaces show good corrosion resistance against chloride ion-like halides.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors Keywords

Nanotech 2007 Conference Program Abstract


Names, and logos of other organizations are the property of those organizations and not of NSTI.
This event is not open to the general public and NSTI reserves the right to refuse admission and participation to any individual.