Nanotechnology Conference and Trade Show - Nanotech 2006
> Program > Technical Conferences > Business & Development > Nano Impact Workshop > Nanotech Job Fair > Expo
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Confirmed Speakers
Conferences & Symposia

Conference Proceedings

Conference Technical Proceedings

A Behavior of Protein Adsorption on Poly(Ethylene Glycol)-Modified Surfaces under Flow Conditions at Relatively Low Concentrations for Microfluidics Systems

C.J. Chun, K. Lenghaus, L. Riedel, A. Bhalkikar and J.J. Hickman
University of Central Florida, US

Keywords:
protein adsorption, PEG, microfluidics systems, flow effect

Abstract:
Microfabrication technology has been used to create new microfluidics systems for bioanalytical and medical device applications in the last decade. The handling of relatively small amounts of analytes, at significantly lower concentrations, combined with the fact that the surface-to-volume ratio increases in direct proportion to the device size decreasing, could create potential problems in device utilization. The problem being that, the analytes or target molecules may be completely non-specifically adsorbed on the surfaces of the microdevices before they reach the detector. Thus, the basic understanding of the adsorption behavior of biomolecules on the surfaces of these systems is critical for their use in microfluidics as well as bioanalytical devices.
We have developed assays to evaluate protein adsorption under flow and static conditions at submonolayer coverages on poly(ethylene glycol) (PEG)-modified surfaces, which are used for many applications in an attempt to resist or eliminate protein adsorption. Protein adsorption onto PEG-modified microcapillary surfaces, under flow conditions, has been determined at different flow rates as well as various protein concentrations. Alkaline phosphatase and horseradish peroxidase were used to evaluate proteins adsorption behavior at the relatively low concentration range of 10-300 ng/ml, which although low, was still significant. The flow rate was also seen to affect the protein adsorption on the PEG-modified-surfaces at a fixed concentration. We have extended our experimental studies to obtain a saturated (maximum) layer on the PEG-modified surface at a fixed 300 ng/ml, at varied flow rates, in a simulation (model) study for the development of new biocompatible microfluidics systems.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2006 Conference Program Abstract

 
Nanotechnology Conference | Terms of use | Privacy policy | Contact | NSTI Home
Program | Technical Conferences | Business & Development | Nano Impact Workshop | Nanotech Job Fair | Expo |
Nanotech 2006 Home | Press Room | Venue | Subscribe | Site Map
Names, and logos of other organizations are the property of those organizations and not of NSTI.
This event is not open to the general public and NSTI reserves the right to refuse admission and participation to any individual.