Nanotechnology Conference and Trade Show - Nanotech 2006
> Program > Technical Conferences > Business & Development > Nano Impact Workshop > Nanotech Job Fair > Expo
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Confirmed Speakers
Conferences & Symposia

Conference Proceedings

Conference Technical Proceedings

Nana-scale Level Numerical Analysis of the Effect of Diffusion on Cavity Growth of Advanced Materials

F.W. Brust
Battelle Memorial Institute, US

Keywords:
high temperature, high pressure, creep damage, diffusion, cavity growth

Abstract:
One of the main future uses of nano-materials is for very high temperature response and management. Many processes today are inefficient because the costs of operating at such high temperatures are not manageable. Diffusion and cavity growth of nano-materials will continue to be life limiting factors as systems are built from the nano-scale. Indeed, many failures occur because of mis-management of high temperatures and pressures inherent in many structural systems. Many times these failures receive extensive press coverage as well (e.g., Columbia failure). At high temperature, cavity initiation and cavity growth are important phenomena in understanding the failure mechanism and in predicting the lifetime of various parts in service in the area of power plants, aerospace applications, among others. Such nucleation and growth phenomena are explained by diffusion of atomic flux (from cavity surface to grain boundary), creep flow, and grain boundary sliding. Cavity growth leads to cavity coalescence, and then grain boundary rupture occurs. Because of the complexity of the physical phenomenon, in most of the numerical work, one of the two extreme cases, fast grain boundary diffusion or fast surface diffusion, with or without the consideration of grain material deformation, is assumed. However, there has not been any unified cavity growth rate analysis where the combined effects of creep flow and surface/grain boundary diffusion mechanisms on cavity growth are considered. An understanding of, and predictive models to assess the high temperature response of materials is a critical step as nano-built materials are used in industry.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2006 Conference Program Abstract

 
Nanotechnology Conference | Terms of use | Privacy policy | Contact | NSTI Home
Program | Technical Conferences | Business & Development | Nano Impact Workshop | Nanotech Job Fair | Expo |
Nanotech 2006 Home | Press Room | Venue | Subscribe | Site Map
Names, and logos of other organizations are the property of those organizations and not of NSTI.
This event is not open to the general public and NSTI reserves the right to refuse admission and participation to any individual.