Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Numerical Modelling of a Microfluidic Ultrasonic Particle Separator

R.J. Townsend, M. Hill, N.R. Harris, N.M. White and S.P. Beeby
University of Southampton, UK

Keywords:
acoustic separation, microfluidics, CFD, FEA, modelling

Abstract:
Particles held in a fluid suspension and within an acoustic standing wave experience an acoustic radiation force. The force causes particles to move to the pressure nodes of the acoustic field creating a concentrate, contributing to the sensing of particles or cells. To predict the performance of devices relying on acoustic radiation forces and to assist with design, a simulation approach is used which combines several modelling techniques. Particle trajectories through the acoustic field and the resulting concentration profile are determined by resolving the forces experienced by particles numerically. This particle simulation model is further supported by more detailed analysis of the acoustic and fluid flow fields using finite element analysis and computational fluid dynamics, applicable to the microfluidic flow. These modelling techniques are applied to the simulation of a microfluidic ultrasonic particle separator, driven using a printed PZT transducer and relying on silicon and Pyrex etch fabrication. The device issues particle concentrated and clarified flow through two outlets, respectively. Test data taken from a fabricated device is used to evaluate the simulation approach which correlate well with eachother. The simulation approach is used successfully to redesign the acoustic and fluid geometry and to predict the influence of operating conditions.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact