Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Fabrication and Characterization of 3D Square Spiral Photonic Crystals

M.O. Jensen, M.A. Summers and M.J. Brett
University of Alberta, CA

Keywords:
photonic crystals, nanostructures thin films, glancing angle deposition, photonic bandgap, square spiral

Abstract:
Three-dimensional photonic crystals can be fabricated using the glancing angle thin film deposition technique (GLAD). These nanostructured thin films consist of a periodic array of micrometer-sized silicon square spirals, as proposed by O. Toader and S. John. The GLAD fabrication process uses advanced substrate motion and oblique incidence deposition. These nanostructures are grown with in-plane periodicity using a pre-patterned substrate consisting of a tetragonal array of relief structures. The arrays can be fabricated using a number of lithographic techniques. Direct-write lithography provides the significant advantage of easy parameter modification, since no master is required. We demonstrate the use of laser direct-write lithography (LDL) and electron beam lithography (EBL) to fabricate silicon square spiral photonic crystals with a complete three-dimensional photonic band gap. Additionally, these techniques enable the scaling down of photonic crystal dimensions to produce a photonic bandgap in the near infra-red region. Finally, we investigate the process of inverting the square spiral structure to produce the corresponding inverse structure with a larger predicted bandgap. This involves fabricating a template square spiral film from a non-silicon material, filling the film with silicon, and finally removing the original template with an isotropic etch process.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact