Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Band Engineering of Carbon Nanotube Field-Effect Transistors via Selected Area Chemical Gating

X. Liu, Z. Luo, S. Han, T. Tang, D. Zhang and C. Zhou
University of Southern California, US

Keywords:
carbon nanotubes, selected area gating, field effect transistor, subthreshold

Abstract:
Since carbon nanotube field-effect transistors were reported, great effort has been devoted to understanding the operation of these transistors and improving their performance. Here we present a new approach to engineer the band structure of carbon nanotube field-effect transistors via selected area chemical gating, which provides a way to tailor the device performance without the complexity of extra gate electrodes. By exposing the center part or the contacts of the nanotube devices to oxidizing or reducing gases, a good control over the threshold voltage and subthreshold swing has been achieved. Our experiments reveal that NO2 shifts the threshold voltage higher while NH3 shifts it lower for both center-exposed and contact-exposed devices. However, modulations to the subthreshold swing are in opposite directions for center-exposed and contact-exposed devices: NO2 lowers the subthreshold swing of the contact-exposed devices, but increases that of the center-exposed devices; In contrast, NH3 reduces the subthreshold swing of the center-exposed devices, but increases that of the contact-exposed devices. A model has been developed based on Langmuir isotherm, which can explain the experimental results well. Our concept of selected area doping can be readily applied to solid-phase doping techniques and render stable nanotube devices mimicking conventional metal-oxide-semiconductor field-effect transistors.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact