Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Fabrication of Metal Oxide Coaxial Nanotubes using Atomic Layer Deposition

D-K Jeong, T-K Oh, H-J Shin, W.-G. Jung, J-G Lee, M-M Sung and J-Y Kim
Kookmin University, KR

Keywords:
metal, nanotube, SAMs, ALD

Abstract:
We fabricated of nanotubular structures of TiO2 and ZrO2 using the gas-phase fabrication method atomic layer deposition (ALD) with nanoporous structure of polycarbonate (PC) templates. Contact printed alkylsiloxane monolayers on both sides of PCs were prepared for one-step process of the freestanding oxide nanotubes. 30 ~ 200 nm of diameter TiO2 and ZrO2 nanotubes were successfully fabricated by ALD at 140 _C and subsequent chemical etching of the PC. Prepared oxide nanotubes are characterized by high-resolution TEM, field emission SEM, and atomic force microscopy (AFM). Prepared TiO2 nanotubes are mostly amorphous, while the ZrO2 nanotubes contained more nanocrystallites. Very high aspect ratio of 200:1 was achieved in both oxide nanotubes. Growth rates of the wall thickness in oxides nanotubes were 0.5 and 0.6 Å/cycles for 200 and 50 nm pore sizes of PC templates, respectively, showing ultra-precise control of the wall thickness, so as to inner diameter of the tubes. Further we developed ALD processes for Cu layer and coaxial nanocables of TiO2/Cu and/or ZrO2/Cu were successfully fabricated with the same method as described above. Combination of the ultra-precise wall thickness control of oxide nanotube with high-aspect ratio filled Cu layer provides us a possible quantum coaxial cable in the nanoelectronic applications.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact