Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Ultra High Strength Nanotube Based Composites: the Mechanism of Strength Increase

S. Giordani, M. Cadek, R. Blake, Y.K. Gun’ko, A. Dalton, J.M. Razal, R.H. Baughman, J.B. Nagy, W.J. Blau and J.N. Coleman
Trinity College Dublin, IE

Keywords:
nanotube composites, mechanical properties, polymers

Abstract:
We have studied the mechanical properties of polymer-carbon nanotube composites. Tensile tests were carried out on free-standing composite films of polyvinyl alcohol and six different types of carbon nanotubes for different nanotube loading levels. Significant increases in Young’s modulus by up to a factor of two were observed in all cases. Theories such as Krenchel’s rule-of-mixtures or the Halpin-Tsai-theory could not explain the relative differences between composites made from different tube types. However, it is possible to show that the reinforcement scales linearly with the total nanotube surface area in the films. In addition, in all cases crystalline coatings around the nanotubes were detected by calorimetry suggesting comparible polymer-nanotube interfaces. Thus, the reinforcement appears to be critically dependent on the polymer-nanotube interfacial interaction as previously suggested. Furthermore, additional polymer-multiwall nanotube composite films were fabricated using polyvinylalcohol and chlorinated polypropylene. As observed previously polyvinylalcohol formed a crystalline coating around the nanotubes, maximising interfacial stress transfer. In the second case the interface was engineered by covalently attaching chlorinated polypropylene chains to the nanotubes, again resulting in large stress transfer. Increases in Young’s modulus, tensile strength and toughness of ´3.7, ´4.3 and ´1.7 respectively were observed for the polyvinylalcohol based materials. Similarily for the polypropylene based composites, increases in Young’s modulus, tensile strength and toughness of ´3.0, ´3.9 and ´4.4 respectively were observed. In addition a model to describe composite strength was derived. This model shows that the tensile strength increases in proportion to the thickness of the interface region. This suggests that composite strength can be optimised by maximising the thickness of the crystalline coating or the thickness of the interfacial volume partially occupied by functional groups.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact